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Introduction

* Logistic regression is a statistical method used
for binary classification.

* |t predicts the probability that an instance
belongs to a particular class.

Logistic Regression
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Logistic Regression Overview

Unlike linear regression, logistic regression
outputs probabilities and maps them to
classes using a threshold.

Is Obese == ® O 000

@ = Obese mouse
@ = Not obese mouse

= Line fit to data

YA Lineal Regression
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Lineal Regression Vs Logistic regression

Loss function LR Loss Function Log Regression
e . . : : 1
 Minimiser la fonction: P(y = 1|1X) = sigmoid(z) = ;—
where

z= By + fiz1 + Bazy + ... + Bz

1 n
—_— Pl On chercher a minimiser la fonction
MSE = » 2 (vi — )

Log-Loss
i=1

A suitable loss function in logistic regression is called the Log-Loss, or
binary cross-entropy. This function is:

Log-Loss = Z —(yi *log(pi) + (1 — y;) *log(1 — p;))
i=0

Min Log-Loss est équivalent a maximiser
Log-Likelihood

n

Log-Likelihood = Y "(y; * log(pi) + (1 — ;) = log(1 — p;))
=l



Termenology

Probability Event Occurs (p)
Probability Event Does Not Occur (1 — p)

Odds =

In logistic regression, we model the probability that the output ¥ = 1 given the input X:
P(Y =1] X) = p(X)

This probability is modeled using the logistic (sigmoid) function:

5 1
p(X) o 1+ e—(Bot+Piz1+Bazat- - -+Bnzy)

Or more compactly:

1 T
p(X) = where z = ) + Z Bix;
i=1

1+e*



Odds

The odds of an event are defined as the ratio of the probability the event happens to the probability it

doesn't:

pY=11X) _ »X)
1-PY=1|X) 1-pX)

Odds =

Logistic regression models the log of the odds (called the logit) as a linear function of the input variables:

g (122

T?(X)) =pfo+bizi+ -+ Buzn

This is the core of logistic regression: we predict log-odds linearly, then use the sigmoid to get the actual

probability.
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A Binary Feature

Interpretation of Log Regression
Model

A Continuous Feature Multivariate Regression

Interpreting A Logistic Regression Model With One
Binary Feature

1

» P = ]_ =
Model Form: P(y = 1/z) 11 ¢-Guthura)

where € [0, 1]

1
1 + e (Bo+hrxFoggy)

Example: P (Day = Sunny|F 0991}) =

Interpretation: This model summarizes the difference in the probability
of a sunny day for days that are foggy and days that are not.

The weight ﬁl is the change in the log-odds ratio for a foggy day relative
to a non-fogqy day. For a coefficient of -0.7, the exponentiated value is

e 07 = 0.50, which indicates that on average, the odds that the day will
be sunny multiplies by 0.50 (i.e. is about half) if it is foggy compared to if
itis not.

The intercept ,gg is the odds of a sunny day if it is not foggy.



Interpretation of Log Regression
Model

A Continuous Feature Multivariate Regression

Interpreting A Logistic Regression Model With One
Continuous Feature

1L
1 + e {jﬁ —_51 T )

Model Form: P(v = 1|z) = where z € [R]
Example: P(Day = Sunny|Temperature) =

1
11 e [_30+_;§1*Temperature]

Interpretation: This model describes the probability of a sunny day
across temperatures (measured in degrees Fahrenheit).

The weight ng is the change in the log-odds ratio for ¥ per unit change in
X . When exponentiating the weight, this becomes the change in the
odds ratio for i per unit change in X . In other words, the odds are
multiplied by 85’ . Therefore, for a coefficient of 0.7, the exponentiated
value is €97 = 2.01, which indicates that on average, for an increase of 1
degree in temperature, the odds that the day will be sunny multiplies by
2.01 (i.e. approximately doubles).

The intercept ,go is the odds of a sunny day at O degrees Fahrenheit. We
can use this to calculate the probability of a sunny day by using the

efi

1iefi”

following calculation: p =

2

If the intercept coefficient is 2, this means that there isa p — ITBEE —
0.88 probability that it will be a sunny day at O degrees Fahrenheit.



Interpretation of Log Regression
Model

A Continuous Feature Multivariate Regression

Interpreting A Multivariate Logistic Regression Model

1
1+e {_.-3.9'—_.-3.111:1]+_.-3.g*:sg+...+,5?,‘*xﬂ)

Model Form: P(y = 1|z) =

Example: P'(Day = Sunny|Temperature, Foggy) =
1
1+e [_30+_31*Tempemture—ﬁg*Foggy)

Interpretation: Typically, a logistic regression model will contain more
than one feature. We call this a multivariate logistic regression model. In
this example, we model the probability of a sunny day as a function of
temperature and whether or not it is foggy.

The intercept represents the predicted probability of a sunny day for
Days with all ; = 0: it represents the probability for days without fog
and with a temperature of zero degrees Fahrenheit.

The weight 51 is the change in the log-odds ratio for a sunny day per unit
change in temperature, and the weight f3; is the change in the log-odds
ratio for a foggy day relative to a non-foggy day.



Confusion matrix

* A confusion matrix is a table used to evaluate
the performance of a classification model,
especially in binary classification.

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)



Metrics obtained from the CM

= From the Confusion Matrix, You Can Get:
e Accuracy = (TP + TN) / (TP + FP + TN + FN)
e Precision = TP / (TP + FP) — how many predicted positives were actually positive?
» Recall (Sensitivity, TPR) = TP / (TP + FN)

e F1Score = 2 x (Precision x Recall) / (Precision + Recall)



Receiver Operating Characteristic: ROC

It’s a graphical plot that shows the
performance of a binary classification model
(like logistic regression) at all possible
classification thresholds.



What Does the ROC Curve Show?

True Positive Rate (TPR) = Sensitivity = Recall =
TP / (TP + FN)

— How many actual positives you correctly
identified

False Positive Rate (FPR) = FP / (FP + TN)
—> How many actual negatives were incorrectly
labeled as positive

So:
Y-axis: TPR (good)
X-axis: FPR (bad)



Interpreting the Curve ROC

* A good model hugs the top-left corner (high
TPR, low FPR)

 Arandom model is a diagonal line from (0,0)
to (1,1)

* A perfect model goes straight up the y-axis to
(0,1), then straight across to (1,1)



Area Under the Curve (AUC)

AUC = Area Under the Curve
It gives you a single number:

1.0 - perfect classifier
0.5 - random guessing

< 0.5 - worse than guessing (something is
off)



What do We Mean by Random
Guessing in Classification?

* When we say a model is "random guessing," it
means:

* The model is not learning anything useful
from the data and is just randomly picking
labels (like flipping a coin) when is has to
classify something.



What do We Mean by Random
Guessing in Classification?

* On the ROC Curve:

* Arandom guesser follows the diagonal line
from (0,0) to (1,1), where:
— TPR = FPR at all points

— That means: for every true positive it finds, it also
falsely classifies a negative as positive just as
often.

* This gives an AUC = 0.5, which is equivalent to
no predictive power.



Conclusion

* Logistic regression is a powerful tool for binary
classification tasks.

* Simple yet effective with interpretable results.



