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What is Time Series Analysis?

* Atime series is a sequence of data points
collected or recorded at successive time

intervals. It represents how a variable changes
over time.
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Importance of Time Series Analysis

Studying time series is important for several reasons, especially in fields like finance,
economics, engineering, and science.

1. Understanding Trends and Patterns
— Time series analysis helps identify long-term trends, seasonal patterns, and cyclical behaviors
in data. This is useful for making informed decisions based on historical data.
2. Forecasting and Prediction
— Time series models are used to predict future values based on past data. This is essential in
stock market forecasting, weather prediction, demand forecasting, and many other
applications.
3. Anomaly Detection
— Time series analysis helps detect unusual patterns or anomalies, which is important in fraud
detection, network security, and quality control.
4. Causal Relationships and Dependencies

— It helps in understanding how different factors influence each other over time. For example, in
economics, time series analysis can determine how interest rates affect inflation.



Importance of Time Series Analysis

5. Control and Optimization

— Time series models are used in control systems and optimization
problems, such as managing inventory in supply chain
management or adjusting parameters in industrial processes.

6. Risk Management

— In finance and insurance, time series models help assess risks,
volatility, and uncertainties in markets.

7. Policy Making and Strategic Planning

— Governments and businesses use time series analysis to make
data-driven policy and strategic decisions.

8. Improving Machine Learning Models

— Time series data is widely used in machine learning for
applications like speech recognition, energy consumption
forecasting, and healthcare analytics.



Components of Time Series

1. Trend

2. Seasonality

3. Cyclic Patterns
4. Random Noise
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Examples of Time Series Data

Stock Prices,
Weather Data,
Sales Figures,

Economic Indicators



Data Collection & Sources

Financial,
Weather,
Economic,

and Business Data



Data Preprocessing in time series

* Handling missing values,
* smoothing techniques,

 transformations.



Visualization of Time Series Data

* Line plots,
* Seasonal decomposition,
* Trends.



Smoothing models

 Traditional Statistical Models

— ARIMA (AutoRegressive Integrated Moving
Average): A widely used model for forecasting
stationary time series.

— SARIMA (Seasonal ARIMA): An extension of
ARIMA that captures seasonality.

— VAR (Vector Autoregression): Used for
multivariate time series forecasting.

— Holt-Winters (Exponential Smoothing): Effective
for time series with trend and seasonality.



Smoothing models: Machine Learning
Models

— Random Forest / XGBoost / LightGBM: These
tree-based models can handle time series
forecasting by treating the problem as a
supervised learning task with lag features.

— Support Vector Regression (SVR): Can be applied
to time series forecasting but requires feature
engineering.



Smoothing Techniques: Deep Learning
Models

* Recurrent Neural Networks (RNNs): Designed to
handle sequential data.

* Long Short-Term Memory (LSTM): A type of RNN that
can capture long-term dependencies in time series.

* Gated Recurrent Units (GRU): Similar to LSTMs but
computationally more efficient.

 Temporal Convolutional Networks (TCN): Uses
convolutional layers instead of recurrent layers to
capture time dependencies.

* Transformers (e.g., Time Series Transformer,
Informer): Adapted from NLP to handle long-range
dependencies in time series data.



Hybrid and Specialized Models

Facebook Prophet: Designed for business
forecasting with automatic trend and seasonality
detection.

DeepAR (Amazon): A probabilistic forecasting
model using deep learning.

N-BEATS (Neural Basis Expansion Analysis for
Time Series): A deep learning model specifically
designed for time series forecasting.

Neural ODEs (Ordinary Differential Equations): A
newer approach to modeling time series using
continuous-time representations.



Autoregressive (AR) Model

AR models the relationship between a variable
and its past values.

AR(p) Model Equation:
Xt=ct+h X1 +d2Xi 2+ -+ dpXe pt+ e

where:
o X, = The observed time series at time £
« ¢ = Constant term (optional)
e ¢b; = Autoregressive coefficients (parameters)
« p = Order of the AR process (number of lagged terms)

» & ~ N(0,0?) = White noise (random error)



Moving Average (MA) Model

* MA captures the relationship between a
variable and past errors.

MA(q) Model Equation:
Xt=p+e+bie1+0e 2+ ...+ Ogetyg

where:
¢ X, = The observed time series at time £
e L = Mean of the series (optional, often assumed to be 0 for simplicity)
e & ~ N(0,0?%) = White noise error terms

e #; = MA coefficients (parameters)

g = Order of the MA process (number of lagged error terms included)



ARMA (Autoregressive Moving
Average)

 Combination of AR(p) and MA(q) models.

ARMA(p, q) Model Equation:

P q
Xi=c+ Z i Xi—i + Z Bjet—j + €
i=1 =1

where:
o X; = Observed time series at time ¢
e ¢ = Constant term (optional)

» ; = AR coefficients (how past values influence the present)

#; = MA coefficients (how past error terms influence the present)

p = Order of the AR part (number of lagged observations)

g = Order of the MA part (number of lagged error terms)

e; ~ N(0,02) = White noise error term



ARIMA (Autoregressive Integrated
Moving Average)

e ARIMA = AR + Differencing + MA.

ARIMA(p, d, q) Model Equation
&,(B)(1 — B)’X; = c + ©4(B)e;
where:
« X, = Observed time series at time ¢
» B = Backshift operator (BX; = X;_1)

» d = Degree of differencing (number of times differencing is applied to

make the series stationary)
» p = AR order (number of lagged observations)
» ¢ = MA order (number of lagged error terms)
« &,(B) = Autoregressive polynomial (1 — ¢ B — ¢2B* — ... — ¢,BF)
« ©,(B) = Moving Average polynomial (1 + 61 B + 6:B* + ... + 6,B9)

» € ~ N(0,0?) = White noise



ACF and PACF Interpretation

ldentification through ACF and PACF

Definition
Model ACF PACF
AR(1) Geometric Decay  Cutoff after Lag 1
AR(p) Geometric Decay  Cutoff after Lag p
MA(1) Cutoff after Lag 1 Geometric Decay
MA(q) Cutoff after Lag g Geometric Decay

ARMA(p. q)

Geometric Decay

Geometric Decay




ARMA model’s parameters

* The Autocorrelation Function (ACF) and
Partial Autocorrelation Function (PACF) help
in selecting the appropriate values for p (AR

order) and g (MA order) in an ARMA(p, q)
model.



ACF

Autocorrelation Function (ACF): Measures the correlation between
a time series and its past values at different lags. It helps to
determine the order of a MA model
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PACF

Partial Autocorrelation Function (PACF): Measures the direct correlation
between a time series and its past values, removing the effects of
intermediate lags. It hepls to dertmine the ordre of a AR model
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Model Selection Based on ACF & PACF

e Examine ACF & PACF plots to determine if the
time series follows AR(p), MA(q), or ARMA(p,

q).
* Fit different ARMA models and compare
AIC/BIC for the best model.



AlIC and BIC

* AIC (Akaike Information Criterion): Measures
the relative quality of a statistical model,
penalizing overfitting.

e BIC (Bayesian Information Criterion): Similar
to AIC but penalizes complexity more strictly.

 The AIC and BIXC are used to compare two

models, the model with small AIC and BIC is
better



AlIC and BIC

* The Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC) are used
to assess the goodness of fit of statistical
models while penalizing model complexity.



AlC

1. Akaike Information Criterion (AIC)
AIC = -21n(L) + 2k

e L = Maximum likelihood of the model
e k = Number of estimated parameters

¢ A lower AIC value indicates a better-fitting model.

SSE
AIC=n-In (—) + 2k

T
Where:
e 11 = Number of observations (data points).

e SSE = Sum of Squared Errors or Residual Sum of Squares (RSS).

¢ k = Number of parameters (model parameters including the intercept).



BIC

2. Bayesian Information Criterion (BIC)
BIC = -2 ]_u(L} + k ]_u(n}

» 11 = Number of observations
¢ k = Number of estimated parameters

+ BIC penalizes complexity more than AIC, favoring simpler models when sample size 1 is large.

BIC (Bayesian Information Criterion):

SSE
BIC =n-ln (—) + k- In(n)

i
Where:

¢ 1. = Number of observations.

¢ SSE = Sum of Squared Errors (RSS).

* k = Number of model parameters.

¢ In = Natural logarithm.



Mathematical formulation of SSE and
RSS

Mathematical Formulation of SSE and RSS

Given a set of observed values y;, ¥, - . . , Y, and the predicted values from a model §1, 9o, . . . , Un.

the SSE (or RSS) is calculated as the sum of the squared differences between each observed value and

its corresponding predicted value:
TL
SSE =RSS = ) (v — )’
i=1

Where:

¢ Y; = The observed value (actual data point) at time 1.
* 1; = The predicted value from the model at time 1.

¢+ 71 = The number of observations in the dataset.



Selection Models

* Model seclection based on:
— p-values
— Residual sum of squares and R?=(TSS-RSS)/TSS
— AIC
— BIC
— AICc
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Simple Exponential Smoothing

Fer= Fe + a(Y, — F})
Fo.i = (1-0)F, + a Y,
Where:
F.., is the forecasting of the period t+1
F.: forecasting of the period t
Y,: real observation of period t
o: smoothing constant in the range [0,1]



Holt’s Trend Corrected Exponential
Smoothing

If a time series is increasing or decreasing approximately at a
fixed rate, then it may be described by the LINEAR TREND
model

Vi :ﬂ0+ﬂ1t+gt

If the values of the parameters 6, and 8, are slowly changing
over time, Holt’s trend corrected exponential smoothing
method can be applied to the time series observations.

Note: When neither 6, nor 6, is changing over time,
regression can be used to forecast future values of y..

Level (or mean) attime T: 6, + 6,T
Growth rate (or trend): 8,



Holt’s Trend Corrected Exponential
Smoothing

Holt’s model Augments SES by capturing a trend
component

Series has Levl (1)
Trend b,
Noise : Unpredictable

Forecast = estimated level + trend at most recent
time point
— Fr =l + kb,



Updating the Level and trend

e Level estimate
lr=ay; +(1_05)(€T—1 +bT—1)

e Trend estimate
bT — 7/(€T _gT—1)+(1_7/)bT—1

where o = smoothing constant for the level (0 < a < 1)

v = smoothing constant for the trend (0 <y < 1)



Hot’s model forecasting

Additive Trend
Fooo = 1.+ kb,

Multiplicative model:
I:t+k = It * (bt)k

Initialization:

__ |0 =intercept of the linear regression ( others values can be considered)
__ b0 =trend of the linear regression ( others values can be considered)
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Holt-Winter’s model (Triple
exponential smoothing)

 Augment holt’s method by capturing the
seasonal component
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Holt-Winters Methods

 Two Holt-Winters methods are designed for time series that
exhibit linear trend
- Additive Holt-Winters method: used for time series
with constant (additive) seasonal variations

— Multiplicative Holt-Winters method: used for time series
with increasing (multiplicative) seasonal variations

* Holt-Winters method is an exponential smoothing approach
for handling SEASONAL data.
 The multiplicative Holt-Winters method is the better known of

the two methods.




Multiplicative Holt-Winters Method

* Itis generally considered to be best suited to forecasting time
series that can be described by the equation:

Y, = (B + Bit)x SN, x IR,
— SN,: seasonal pattern
— IR,: irregular component

* This method is appropriate when a time series has a linear
trend with a multiplicative seasonal pattern for which the

level (f,+ 5,¢), growth rate (f,), and the seasonal pattern
(SN,) may be slowly changing over time.



Multiplicative Holt-Winters Method

e Estimate of the level

lr=a(y;/sn._ )+(U—a)(l,_ +b, )

e Estimate of the growth rate (or trend)

bT — 7/(€T _zT—1)+(1_7/)bT—1

e Estimate of the seasonal factor

sn, =0y, /L.)+(1-0)sn,_,

where a, v, and 6 are smoothing constants between 0 and 1,

L = number of seasons in a year (L = 12 for monthly data,
and L = 4 for quarterly data)



Multiplicative Holt-Winters Method

* Point forecast made at time T for y;, ,
.)/>T+p(T):(€T+pr)SnT+p—L (pr=12,3,..)
 MSE and the standard errors attime T

SSE = Z —9.-DY

MSE = SS—E, s =~ MSE



Procedures of Multiplicative Holt-Winters
Method

e Use the Sports Drink example as an illustration

Quarterly sales of Tiger Sports Drink

Year
Quarter 1 2 3 4 5 6 7 8
1 72 i 81 87 94 102 106 115
2 116 123 131 140 147 162 170 177
3 136 146 158 167 177 191 200 218
4 96 101 109 120 128 134 142 149
250 -
200 |
)
x 150 -
£
&
£
8 100 -
*
50
0 T
0 5 10 15 20 25 30 35

Time



Procedures of Multiplicative Holt-Winters
Method

* Observations:
— Linear upward trend over the 8-year period

— Magnitude of the seasonal span increases as the
level of the time series increases

—> Multiplicative Holt-Winters method can be
applied to forecast future sales



Procedures of Multiplicative Holt-Winters
Method

* Step 1: Obtain initial values for the level €,, the growth
rate b,, and the seasonal factors sn ;, sn_,, sn_,, and sn,,

by fitting a least squares trend line to at least four or five
years of the historical data.

— y-intercept = €; slope = b,




Procedures of Multiplicative Holt-Winters

Example

Method

— Fit a least squares trend line to the first 16 observations

— Trend line

¥, =95.2500+2.4706¢

— €,=95.2500; b, = 2.4706

SUMMARY OUTPUT

Regression Stafisiics

Multiple R
R Square

Adjusted R Square
Standard Error

Observations

0.403809754
0.163062318
0.103281055
27.58325823

16

ANOVA
df
Regression 1
Residual 14
Total 15
Coefficients
Intercept 95 25

X Vanable 1

2. 470588235




Procedures of Multiplicative Holt-Winters
Method

* Step 2: Find the initial seasonal factors

1. Compute V, for the in-sample observations used for
fitting the regression. In this example, t=1, 2, ..., 16.

$, =95.2500 +2.4706(1) = 97.7206
$, =95.2500 +2.4706(2) =100.1912

Ve =95.2500+2.4706(16) =134.7794



Procedures of Multiplicative Holt-Winters
Method

* Step 2: Find the initial seasonal factors

2. Detrend the data by computingS, =y,/y, for each time
period that is used in finding the least squares
regression equation. In this example, t=1, 2, ..., 16.

S =y, /9 =72/97.7206 = 0.7368
S, =y,/9, =116/100.1912 =1.1578

S =/ Pe =120/134.7794 = 0.8903



Procedures of Multiplicative Holt-Winters
Method

* Step 2: Find the initial seasonal factors

3. Compute the average seasonal values for each of the L
seasons. The L averages are found by computing the
average of the detrended values for the corresponding
season. For example, for quarter 1,

T S+ 8, +85,+35,;
[1] 4
~0.7368+0.7156 +0.6894 + 0.633 1
4

=0.7062




Procedures of Multiplicative Holt-Winters
Method

Step 2: Find the initial seasonal factors

4. Multiply the average seasonal values by the normalizing
constant
L

L

S[i]
=1

CF =

[

such that the average of the seasonal factorsis 1. The
initial seasonal factors are

sn,_, =8,(CF) (i=12,..,L)



Procedures of Multiplicative Holt-Winters
Method

Step 2: Find the initial seasonal factors

4. Multiply the average seasonal values by the normalizing
constant such that the average of the seasonal factors is
1.
* Example
CF=4/3.9999 = 1.0000

sn_y =sn_, =8,,(CF) =0.7062(1) = 0.7062
sn_, =sn, , =S, (CF)=1.1114(1)=1.1114
sn_ =sn,_, =S, (CF)=1.2937(1) =1.2937
sny =sn, , = S,,(CF)=0.8886(1) = 0.8886



Procedures of Multiplicative Holt-Winters
Method

* Step 3: Calculate a point forecast of y, from time 0 using the
initial values

),}T+p(T):(€T+pr)SnT+p—L (T'=0,p=1

»(O0)=(,+by)sn,_,=,+b,)sn_,
=(95.2500+2.4706)(0.7062)
=69.0103



Procedures of Multiplicative Holt-Winters
Method

* Step 4: Update the estimates €, b;, and sn; by using some
predetermined values of smoothing constants.

 Example: leta=0.2,y=0.1,and 0 =0.1

t=a(y /sn_)+(-a)l,+b,)
=0.2(72/0.7062) +0.8(95.2500+ 2.4706) = 98.5673

b=yl =L)+(1=7)b
=0.1(98.5673-95.2500) + 0.9(2.4706) = 2.5553
sn,=0(y,/£,)+({1-0)sn,_,
=0.1(72/98.5673) +0.9(0.7062) = 0.7086

)/>2 (1) — (51 +b1 )Sn2—4
=(98.5673+2.5553)(1.1114)=112.3876



0, =aly,/sn, )+ (1-a)l, +b)
=0.2(116/1.1114)+0.8(98.5673 +2.5553)
=101.7727

b, = 7/(€2 _gl)_i_(l_}/)bl
=0.1(101.7727 - 98.5673) + 0.9(2.5553)
=2.62031

Sn, = 5(y2/€2)+(1—5)sn2_4
=0.1(116/101.7727)+0.9(1.1114)
=1.114239

)73(2): (62 +b, )Sn3—4
=(101.7727 +2.62031)(1.2937)
=135.053



b, = 05()’4/Sn4—4)+(1_05)(€3 "'bs)
=0.2(96/0.8886)+0.8(104.5393 + 2.6349)
=107.3464

b, = 7/(€4 _63)+(1_7)b3
=0.1(107.3464 —104.5393)+0.9(2.6349)
=2.65212

Sny = é‘()74/64)4'(1_5)5724—4
=0.1(96/107.3464 )+ 0.9(0.8886)
=0.889170

Vs (4) = (64 +, )Sn5—4
= (107.3464 +2.65212)0.7086)
=77.945
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alpha
0.2

¥

[
116
136

96

[
123
146
101

81
131
158
109

87
140
167

200
142
115
177
218
149

gamma
0.1

Level

9525
98.56729
101.7726
104.5393
107.3464

109.731
111.9629
114.1974
116.1165
117.7668
119.6835
1220734
124 1164
1258035
127.6589
125.736%9

156.1396
158.5505
161.2803
1628178
165.7889
1678899

delta
01

Growth
Rate

2.4706
2.5553
2.6203
2.6349
2.6521
2.6254
2.5860
2.5509
2.4877
2.4040
2.3552
2.3587
2.3271
2.2631
2.2224
2.2079

2.1752
2.1988
2.2519
2.1804
2.2595
2.2437

SSE

177.3223

Factor
0.7062
1.1114
1.2937
0.8886
0.7086
1.1142
1.2944
0.8892
0.7079
11127
1.2928
0.8872
0.7059
1.1109
1.2930
0.8863
0.7045
1.1094
1.2924

1.2903
0.8908
0.7047
1.1046
1.2923
0.8905

MSE 5
6.1146 24728
Forecast

Seasonal Made Last Forecast

Period Error
69.0103 | 2.9897
112.3876 | 3.6124
135.0631 | 0.9468
95.2350 0.7650
779478 | -0.9478
1261919 | -2.1919
1452750 | -2.2750
103.8091 | -2.8091
83.9641 | -2.9641
133.7108 | -2.7108
1677764 | 0.2246
1104005 | -1.4005
89.2693 | -2.2693
142 2642 | -2.2642
167.89337 | -0.9337
2020396 -2.0396
140.9508 | 1.0492
1131314 | 1.8686
180.9629 | -3.9529
212.8988 51012
1497057 | -0.70&7

Squared
Forecast
Error

B8.9384
13.0494
0.8967
0.5853
0.5984
4.8043
517565
7.8911
B.7858
7.3482
0.0504
1.9615
51044
5.1268
0.8718

41601
1.1008
34918
156.6252
26.0220
0.4981
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Procedures of Multiplicative Holt-Winters
Method

e Step 5: Find the most suitable combination of
o, ¥, and o that minimizes SSE (or MSE)

* Example: Use Solver in Excel as an illustration

X
Set Target Cell; Solve I
EqualTo: (" Max  Min { Valueof: |0 Qose |
~By Changing Cells:
alpha [852,5C52, 082 A guess |
v\—SHbject to the Constraints: Options
NEBE2 <=1 e Add
SBE2 ==10 _I —
L2 <=1 |
gamma — ECE2 ==10 Ehange R tml
(=1
L2 <=1 | Lt |
/ | R o = Hep |

Slide 57
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0.3356

¥

[
116
136

96

[
123
146
101

81

200
142
115
177
218
149

gamma
0.0455

Level

95.25
93.14144
1025816
1051469
1078277
109.8084
1117076
1137703
1153868
116.7014

1559042
1585811
161.7436
1627095
166.2957
168.1213

delta
01342

Growth
Rate

2.4706
2.5353
2.5765
2.5760
2.5808
2.5534
2.5236
2.5027
24623
2.4100

2.2691
2.2876
23278
22655
2.3256
2.3028

SSE MSE
1684747 £.8095
Forecast
Seasonal Made Last Forecast
Factor Period
0.7062
11114
1.2937
0.8686
0.7089 69.0103
11140 | 113.0035
1.2937 | 136.0431
0.8588 95 7226
07079 78.2674
11123 | 1261717
1.2923 | 147.7768
0.8870 | 103.3468
0.7060 83.4207
1.2906 | 202.1107
08915 | 1409173
07044 | 113.1540
1.1038 | 181.5085
1.2934 | 212.9210
0.8908 | 150.3283

5
24103

Errar

2.9897
2.9965
-0.0431
0.2774
-1.2674
24717
-1.7768
-2.3463
-2.4207

-2.1107
1.0827
1.8460

-4 5085
5.0790

-1.3283

Squared
Forecast
Errar

5.9384
5.9789
0.0018
0.0769
1.6064
4.7164
3.1565
55075
5.B597

4. 4552
1.1721
3.4078
20.3262
257957
1.7643
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Multiplicative Holt-Winters Method

* p-step-ahead forecast made attime T

.),>T+p (T)=(/; +pr)SnT+p—L (p=123,..)

 Example
Y3(32)=(l,, + by, )sn,, , =(168.1213+2.3028)(0.7044) =120.0467
V.. (32) = (0, +2by,)sn,, , =[168.1213 +2(2.3028)](1.1038) =190.6560

V3s(32) = (0, + 3D, )sny_, =[(168.1213 +3(2.3028)](1.2934) = 226.3834
V3 (32) = (0, +4b,,)sn,,_, =[(168.1213+4(2.3028)](0.8908) =157.9678



Multiplicative Holt-Winters Method

 Example

Forecast Plot for Sports Drink Sales

250

—m— Obsenved values

—a— Forecasts

200 -

150 -

Forecasts

100

50 +

Time
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Additive Holt-Winters Method

* Itis generally considered to be best suited to forecasting a
time series that can be described by the equation:

v, =(fy+ pt)+ SN, + IR,
— SN,: seasonal pattern
— IR,: irregular component

* This method is appropriate when a time series has a linear
trend with a constant (additive) seasonal pattern such that
the level (5,+ £,¢), growth rate (f,), and the seasonal pattern
(SN,) may be slowly changing over time.



Additive Holt-Winters Method

Estimate of the level

Uy =a(yy —sny_ ) +A-a)(l; +b )
Estimate of the growth rate (or trend)

by =y(ly =L ) +(1=y)br
Estimate of the seasonal factor

sny =0(yy =Lp)+(1=0)sny_;

where a, v, and ¢ are smoothing constants between 0 and 1,

L = number of seasons in a year (L = 12 for monthly data,
and L = 4 for quarterly data)



Additive Holt-Winters Method

* Point forecast made at time T for y;, ,
),>T+p(T):€T+pr+SnT+p—L (p:192937“~)

e MSE and the standard error s attime T

SSE = Z —9,(t-D]

MSE = SS—E, s =~ MSE



Procedures of Additive Holt-Winters Method

 Consider the Mountain Bike example,

Quarterly sales of the TRK-50 Mountain Bike

Year
Quarter 1 2 3 4
1 10 11 14 19
7, 31 33 36 41
3 43 45 30 55
4 16 17 21 25
60 -
50 -
40 -
3
8
T 30 -
$
(]
20 -
10 A
0 T
0 2 4 6 8 10 12 14 16 18

Time



Procedures of Additive Holt-Winters Method

* Observations:
— Linear upward trend over the 4-year period

— Magnitude of seasonal span is almost constant as
the level of the time series increases

—> Additive Holt-Winters method can be applied to
forecast future sales



Procedures of Additive Holt-Winters Method

* Step 1: Obtain initial values for the level €,, the growth
rate b,, and the seasonal factors sn ;, sn_,, sn_,, and sn,,
by fitting a least squares trend line to at least four or five

years of the historical data.

— y-intercept = €; slope = b,



Procedures of Additive Holt-Winters
Method

 Example
— Fit a least squares trend line to all 16 observations

— Trend Iine SUMMARY QUTPUT
S R— Regression Statistics
yf 2085 + 0980882 ! Multiple R 0.320508842
R Square 0102725918
— eo = 20.85; bo = 0.9809 Adjusted R Square 0.038634912
Standard Error 1428614022
Observations 16
ANOVA
df
Fegression 1
Residual 14
Total 15
Coefficients
Intercept 20.85
Time 0980882353




Procedures of Additive Holt-Winters
Method

Step 2: Find the initial seasonal factors

1. Compute Jfor each time period that is used in finding
the least squares regression equation. In this example, t
=1, 2, ..., 16.

¥y, =20.85+0.980882(1) =21.8309
y, =20.85+0.980882(2) =22.8118

Ve =20.85+0.980882(16) =36.5441



Procedures of Additive Holt-Winters
Method

* Step 2: Find the initial seasonal factors

2. Detrend the data by computing S, =y, for,each
observation used in the least squares fit. In this
example,t=1, 2, ..., 16.

S, =y, —9 =10-21.8309 = —11.8309
S, =y, -9, =31-22.8112 =8.1882

S = Vs — Prs = 25-36.5441 = —11.5441



Procedures of Additive Holt-Winters
Method

* Step 2: Find the initial seasonal factors

3. Compute the average seasonal values for each of the L
seasons. The L averages are found by computing the
average of the detrended values for the corresponding
season. For example, for quarter 1,

S :S1+S5+S9+S13
[1] 4

_ (-11.8309) + <—14.7544>Z<—15-6779>+ (Z14.6015) _ 140162




Procedures of Additive Holt-Winters
Method

* Step 2: Find the initial seasonal factors

4. Compute the average of the L seasonal factors. The
average should be 0.

VAW,



Procedures of Additive Holt-Winters
Method

* Step 3: Calculate a point forecast of y, from time 0 using the
initial values

),>T+p(T):€T+pr+SnT+p—L (T'=0,p=1)
y(0)=0,+b, +sn,_,=0,+b, +sn_,
= 20.85 + 0.9809 + (-14.2162) = 7.6147



Procedures of Additive Holt-Winters
Method

* Step 4: Update the estimates €, b;, and sn; by using some
predetermined values of smoothing constants.

 Example: leta=0.2,y=0.1,and 0 =0.1
ty=a(y, —sn_y)+(-a)(ly+b)
=0.2(10—(~14.2162)) + 0.8(20.85+0.9808) = 22.3079

b=y, —=Ly)+(1=y)b,
=0.1(22.3079 —20.85) + 0.9(0.9809) =1.0286

sny =0(y, —£,)+(1-9d)sn_,
=0.1(10 -22.3079) + 0.9(-14.2162) = —14.0254

v, ()=0,+b, +sn, , =L, +b +sn_,
=22.3079 +1.0286 + 6.5529 = 29.8895
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0.2000

10
31
43
16
11
LT
45
17
14
36
50
2
19
41
5
25

gamma
0.1000

Level

20.85
2230794
23.55864
2457314
2587801
26.56583
27.35185
2797764
28.72023
2937074
30.12295

311391

32.0214
33.00502
3404291
35.28807
3618131

delta
01000

Growth
Fate

0.9809
1.0256
1.0508
1.0472
1.0729
1.0344
1.0096
0.9712
0.9483
0.9186
0.9019
0.9133
0.9102
0.9176
0.9296
0.9612
0.9544

S5E MSE
25.2166 1.9397
Forecast
Seasonal Made Last| Forecast
Factor Period
-14 2162
65529
18.5721
-10.9088
-14.0254 | 7.6147
66418 | 29.8895
18.5575 | 431815
-10.8057 | 14.7115
-14.1794 | 12.9256
65424 342420
18.4040 @ 46.9190
-10.8872  18.1431
-14.2835  15.4892
64759 36.8317
18.4497 | 454239
-10.9096 = 21.1553
-14. 2692  18.6331
65240 | 40.3985
18.5758 | 534227
-10.9368  25.3396

5
1.3927

Erraor

2.3853
1.1105
-0.1815
1.2885
-1.9256
-1.2420
-1.9190
-1.1431
-1.4892
-0.8317
0.5711
-0.1553
0.3669
0.6015
1.5778
-0.3396

Squared
Forecast
Erraor

56896
1.2333
0.0329
1.6603
3.7079
1.5427
3.6825
1.3067
22176
0.6918
0.3262
0.0241
0.1346
0.3618
24894
0.1153
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Procedures of Additive Holt-Winters

Method

e Step 5: Find the most suitable combination of
o, ¥, and o that minimizes SSE (or MSE)

* Example: Use Solver in Excel as an illustration

X
Set Target Cell; 2 Solve I
EqualTo: (" Max  Min { Valueof: |0 Qose |
~By Changing Cells:
alpha [852,5C52, 082 A guess |
v\—SHbject to the Constraints: Options |
[eBs2 <=1 -] Add
SBE2 ==10 —
L2 <=1 |
gamma — ECE2 ==10 Ehange R tml
(=1
L2 <=1 | Lt |
/ | R o = Hep |
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n
16

i
=k

| | | | | | =k
mmhuménmmﬂmmhmm—nm

alpha
0.5606

10
31
43
16
11
33
45
7
14
36
50
21
19
41
55
25

gamma
0.0000

Lewvel

20.85
23.16818
2431613
24 80877
26.41755
26.17496
26.75847
27.00412
27.94229

285268
2947369
31.00029
31.94061

33.0867
34.28034
35 915633
36.34264

delta
0.0000

Growth
Rate

0.9809
0.9809
0.9809
0.9809
09809
09809
0.9809
09809
0.9809
0.9809
0.9809
09809
09809
0.9809
0.9809
0.9809
0.9809

S5E
18.7975

Seasonal
Factor
-14 2162
6.5529
18.5721
-10.9088
-14 2162
6.5529
18.5721
-10.9088
-14 2162
6.5529
18.5721
-10.9088
-14 2162
G.5529
18.5721
-10.9088
-14 2162
6.5529
18.5721
-10.9088

MSE
1.4460

Forecast

Made Last| Forecast

Period

7.6147
30.7020
438691
14.8818
13.1823
33.7088
46.3114
17.0762
14.7070
36.0606
49.0266
21.0723
168.7053
40.6205
53.8333
259874

5
1.2025

Error

2.3853
0.2980
-0.8691
1.1182
-2.1823
-0.7085
-1.3114
-0.0762
-0.7070
-0.0606
0.9734
-0.0723
0.2947
0.3795
1.1667
-0.9874

Squared
Forecast
Errar

56896
0.0B888
0.7553
1.2503
4.7622
0.5024
1.7198
0.0058
0.4993
0.0037
0.9474
0.0052
0.0865
0.1440
1.3612
0.9749
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Additive Holt-Winters Method

* p-step-ahead forecast made attime T

J,>T+p(T):€T+pr+SnT+p_L (p:1,2,3,...)
 Example
y,(16)="1 . +b, +sn, , =36.3426+0.9809-14.2162 =23.1073

D (16) =1, +2b, +5sn, , =36.3426+2(0.9809) + 6.5529 = 44.8573
P1o(16) = £, +3b,, + 51,y , =36.3426+3(0.9809) +18.5721 = 57.8573
Do (16) =0, +4b,, +sn,,_, =36.3426+4(0.9809) —10.9088 = 29.3573



Additive Holt-Winters Method

Example

Forecasts

70

60

50

40 -

30 A

20 A

10 -

Forecast Plot for Mountain Bike Sales

—a— Observed values
—a— Forecasts

10

Time

12

14

16

18

20
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Chapter Summary

* Simple Exponential Smoothing

— No trend, no seasonal pattern

* Holt’s Trend Corrected Exponential Smoothing

— Trend, no seasonal pattern
* Holt-Winters Methods

— Both trend and seasonal pattern

* Multiplicative Holt-Winters method
* Additive Holt-Winters Method



