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What is Time Series Analysis?

• A time series is a sequence of data points 
collected or recorded at successive time 
intervals. It represents how a variable changes 
over time.over time.



Type of Time series



Importance of Time Series Analysis
Studying time series is important for several reasons, especially in fields like finance, 

economics, engineering, and science.

1. Understanding Trends and Patterns
– Time series analysis helps identify long-term trends, seasonal patterns, and cyclical behaviors 

in data. This is useful for making informed decisions based on historical data.
2. Forecasting and Prediction

– Time series models are used to predict future values based on past data. This is essential in – Time series models are used to predict future values based on past data. This is essential in 
stock market forecasting, weather prediction, demand forecasting, and many other 
applications.

3. Anomaly Detection
– Time series analysis helps detect unusual patterns or anomalies, which is important in fraud 

detection, network security, and quality control.
4. Causal Relationships and Dependencies

– It helps in understanding how different factors influence each other over time. For example, in 
economics, time series analysis can determine how interest rates affect inflation.



Importance of Time Series Analysis
5. Control and Optimization

– Time series models are used in control systems and optimization 
problems, such as managing inventory in supply chain 
management or adjusting parameters in industrial processes.

6. Risk Management
– In finance and insurance, time series models help assess risks, – In finance and insurance, time series models help assess risks, 

volatility, and uncertainties in markets.
7. Policy Making and Strategic Planning

– Governments and businesses use time series analysis to make 
data-driven policy and strategic decisions.

8. Improving Machine Learning Models
– Time series data is widely used in machine learning for 

applications like speech recognition, energy consumption 
forecasting, and healthcare analytics.



Components of Time Series

• 1. Trend
• 2. Seasonality
• 3. Cyclic Patterns
• 4. Random Noise• 4. Random Noise



Examples of Time Series Data

• Stock Prices, 
• Weather Data, 
• Sales Figures, 
• Economic Indicators• Economic Indicators



Data Collection & Sources

• Financial, 
• Weather, 
• Economic, 
• and Business Data• and Business Data



Data Preprocessing in time series

• Handling missing values, 
• smoothing techniques, 
• transformations.



Visualization of Time Series Data

• Line plots, 
• Seasonal decomposition, 
• Trends.



Smoothing models

• Traditional Statistical Models
– ARIMA (AutoRegressive Integrated Moving 

Average): A widely used model for forecasting 
stationary time series.

– SARIMA (Seasonal ARIMA): An extension of – SARIMA (Seasonal ARIMA): An extension of 
ARIMA that captures seasonality.

– VAR (Vector Autoregression): Used for 
multivariate time series forecasting.

– Holt-Winters (Exponential Smoothing): Effective 
for time series with trend and seasonality.



Smoothing models: Machine Learning 
Models

– Random Forest / XGBoost / LightGBM: These 
tree-based models can handle time series 
forecasting by treating the problem as a 
supervised learning task with lag features.

– Support Vector Regression (SVR): Can be applied 
to time series forecasting but requires feature 
engineering.



Smoothing Techniques: Deep Learning 
Models

• Recurrent Neural Networks (RNNs): Designed to 
handle sequential data.

• Long Short-Term Memory (LSTM): A type of RNN that 
can capture long-term dependencies in time series.

• Gated Recurrent Units (GRU): Similar to LSTMs but 
computationally more efficient.

• Gated Recurrent Units (GRU): Similar to LSTMs but 
computationally more efficient.

• Temporal Convolutional Networks (TCN): Uses 
convolutional layers instead of recurrent layers to 
capture time dependencies.

• Transformers (e.g., Time Series Transformer, 
Informer): Adapted from NLP to handle long-range 
dependencies in time series data.



Hybrid and Specialized Models

• Facebook Prophet: Designed for business 
forecasting with automatic trend and seasonality 
detection.

• DeepAR (Amazon): A probabilistic forecasting 
model using deep learning.model using deep learning.

• N-BEATS (Neural Basis Expansion Analysis for 
Time Series): A deep learning model specifically 
designed for time series forecasting.

• Neural ODEs (Ordinary Differential Equations): A 
newer approach to modeling time series using 
continuous-time representations.



Autoregressive (AR) Model

• AR models the relationship between a variable 
and its past values.



Moving Average (MA) Model

• MA captures the relationship between a 
variable and past errors.



ARMA (Autoregressive Moving 
Average)

• Combination of AR(p) and MA(q) models.



ARIMA (Autoregressive Integrated 
Moving Average)

• ARIMA = AR + Differencing + MA.



ACF and PACF Interpretation



ARMA model’s parameters

• The Autocorrelation Function (ACF) and 
Partial Autocorrelation Function (PACF) help 
in selecting the appropriate values for p (AR 
order) and q (MA order) in an ARMA(p, q) order) and q (MA order) in an ARMA(p, q) 
model.



ACF
Autocorrelation Function (ACF): Measures the correlation between 
a time series and its past values at different lags. It helps to 
determine the order of a MA model



PACF
Partial Autocorrelation Function (PACF): Measures the direct correlation 
between a time series and its past values, removing the effects of 
intermediate lags. It hepls to dertmine the ordre of a AR model



Model Selection Based on ACF & PACF

• Examine ACF & PACF plots to determine if the 
time series follows AR(p), MA(q), or ARMA(p, 
q).

• Fit different ARMA models and compare • Fit different ARMA models and compare 
AIC/BIC for the best model.



AIC and BIC

• AIC (Akaike Information Criterion): Measures
the relative quality of a statistical model, 
penalizing overfitting.

• BIC (Bayesian Information Criterion): Similar• BIC (Bayesian Information Criterion): Similar
to AIC but penalizes complexity more strictly.

• The AIC and  BIXC are used to compare two
models, the model with small AIC and BIC is
better



AIC and BIC

• The Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC) are used 
to assess the goodness of fit of statistical 
models while penalizing model complexity.models while penalizing model complexity.



AIC



BIC



Mathematical formulation of SSE and 
RSS



Selection Models

• Model seclection based on:
– p-values
– Residual sum of squares and R2=(TSS-RSS)/TSS
– AIC– AIC
– BIC
– AICc



Simple Exponential Smoothing
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Simple Exponential Smoothing
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Holt’s Trend Corrected Exponential 
Smoothing

• If a time series is increasing or decreasing approximately at a 
fixed rate, then it may be described by the LINEAR TREND 
model

If the values of the parameters β0 and β1 are slowly changing 
over time, Holt’s trend corrected exponential smoothing 

tt ty   10

over time, Holt’s trend corrected exponential smoothing 
method can be applied to the time series observations.

Note: When neither β0 nor β1 is changing over time,     
regression can be used to forecast future values of yt. 

• Level (or mean) at time T: β0 + β1T
Growth rate (or trend): β1

3/17/2025 Exponential smoothing methods 32



Holt’s Trend Corrected Exponential 
Smoothing

• Holt’s model Augments SES by capturing a trend 
component

• Series has Levl (lt)• Series has Levl (lt)
• Trend bt

• Noise : Unpredictable
• Forecast = estimated level + trend at most recent 

time point
– Ft+k = lt + kbt

3/17/2025 Exponential smoothing methods 33



Updating the Level and trend
• Level estimate

• Trend estimate
1 1(1 )( )T T T Ty b       

1 1( ) (1 )T T T Tb b      

where  = smoothing constant for the level (0 ≤  ≤ 1)

 = smoothing constant for the trend (0 ≤  ≤ 1)
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Hot’s model forecasting

• Additive Trend
• Ft+k = lt + k bt

• Multiplicative model:• Multiplicative model:
• Ft+k = lt * (bt)k

• Initialization: 

– l0 = intercept of the linear regression ( others values can be considered)

– b0 = trend of the linear regression ( others values can be considered)
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Holt-Winter’s model (Triple 
exponential smoothing)

• Augment holt’s method by capturing the 
seasonal component
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Holt-Winters Methods

• Two Holt-Winters methods are designed for time series that 
exhibit linear trend 
- Additive Holt-Winters method: used for time series 

with constant (additive) seasonal variations
– Multiplicative Holt-Winters method: used for time series 

Slide 39

– Multiplicative Holt-Winters method: used for time series 
with increasing (multiplicative) seasonal variations

• Holt-Winters method is an exponential smoothing approach 
for handling SEASONAL data.

• The multiplicative Holt-Winters method is the better known of 
the two methods.



Multiplicative Holt-Winters Method

• It is generally considered to be best suited to forecasting time 
series that can be described by the equation:

– SNt: seasonal pattern
– IRt: irregular component

0 1( )t t ty t SN IR    

Slide 40

IRt: irregular component
• This method is appropriate when a time series has a linear 

trend with a multiplicative seasonal pattern for which the 
level (β0+ β1t), growth rate (β1), and the seasonal pattern 
(SNt) may be slowly changing over time.



Multiplicative Holt-Winters Method

• Estimate of the level 

• Estimate of the growth rate (or trend)

1 1( / ) (1 )( )T T T L T Ty sn b       

1 1( ) (1 )T T T Tb b      
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• Estimate of the seasonal factor

where , , and δ are smoothing constants between 0 and 1,  
L = number of seasons in a year (L = 12 for monthly data, 

and L = 4 for quarterly data)

1 1( ) (1 )T T T Tb b      

( / ) (1 )T T T T Lsn y sn    



Multiplicative Holt-Winters Method

• Point forecast made at time T for yT+p

• MSE and the standard errors at time T

ˆ ( ) ( ) ( 1, 2,3,...)T p T T T p Ly T pb sn p    

 
T

tyySSE 2)]1(ˆ[
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Procedures of Multiplicative Holt-Winters 
Method

• Use the Sports Drink example as an illustration
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Procedures of Multiplicative Holt-Winters 
Method

• Observations: 
– Linear upward trend over the 8-year period
– Magnitude of the seasonal span increases as the 

level of the time series increases
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level of the time series increases
 Multiplicative Holt-Winters method can be 

applied to forecast future sales



Procedures of Multiplicative Holt-Winters 
Method

• Step 1: Obtain initial values for the level ℓ0, the growth 
rate b0, and the seasonal factors sn-3, sn-2, sn-1, and sn0, 
by fitting a least squares trend line to at least four or five 
years of the historical data. 
– y-intercept = ℓ0; slope = b0
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– y-intercept = ℓ0; slope = b0



Procedures of Multiplicative Holt-Winters 
Method

• Example 
– Fit a least squares trend line to the first 16 observations
– Trend line

ˆ 95.2500 2.4706ty t 

Slide 46

– ℓ0 = 95.2500; b0 = 2.4706

ˆ 95.2500 2.4706ty t 



Procedures of Multiplicative Holt-Winters 
Method

• Step 2: Find the initial seasonal factors
1. Compute       for the in-sample observations used for 

fitting the regression. In this example, t = 1, 2, …, 16. 
ˆty

1ˆ 95.2500 2.4706(1) 97.7206y   
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Procedures of Multiplicative Holt-Winters 
Method

• Step 2: Find the initial seasonal factors
2. Detrend the data by computing                for each time 

period that is used in finding the least squares 
regression equation. In this example, t = 1, 2, …, 16. 

ˆ/t t tS y y

1 1 1ˆ/ 72 / 97.7206 0.7368S y y  
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Procedures of Multiplicative Holt-Winters 
Method

• Step 2: Find the initial seasonal factors
3. Compute the average seasonal values for each of the L

seasons. The L averages are found by computing the 
average of the detrended values for the corresponding 
season. For example, for quarter 1,
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Procedures of Multiplicative Holt-Winters 
Method

• Step 2: Find the initial seasonal factors
4. Multiply the average seasonal values by the normalizing 

constant

[ ]

L

i

L
CF

S



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such that the average of the seasonal factors is 1. The 
initial seasonal factors are
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Procedures of Multiplicative Holt-Winters 
Method

• Step 2: Find the initial seasonal factors
4. Multiply the average seasonal values by the normalizing 

constant such that the average of the seasonal factors is 
1. 
• Example 

CF = 4/3.9999 = 1.0000
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CF = 4/3.9999 = 1.0000

3 1 4 [1]

2 2 4 [2]

1 3 4 [3]

0 4 4 [1]

( ) 0.7062(1) 0.7062

( ) 1.1114(1) 1.1114

( ) 1.2937(1) 1.2937

( ) 0.8886(1) 0.8886

sn sn S CF

sn sn S CF
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Procedures of Multiplicative Holt-Winters 
Method

• Step 3: Calculate a point forecast of y1 from time 0 using the 
initial values

1 0 0 1 4 0 0 3

ˆ ( ) ( ) ( 0, 1)

ˆ (0) ( ) ( )

(95.2500 2.4706)(0.7062)

T p T T T p Ly T pb sn T p

y b sn b sn

  

 

   

   

 



 
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(95.2500 2.4706)(0.7062)

69.0103

 
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Procedures of Multiplicative Holt-Winters 
Method

• Step 4: Update the estimates ℓT, bT, and snT by using some 
predetermined values of smoothing constants.

• Example:  let  = 0.2,  = 0.1, and δ = 0.1

1 1 1 4 0 0( / ) (1 )( )

0.2(72 / 0.7062) 0.8(95.2500 2.4706) 98.5673

y sn b    

   

 
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1 1 0 0( ) (1 )

0.1(98.5673 95.2500) 0.9(2.4706) 2.5553

b b    

   

 

2 1 1 2 4ˆ (1) ( )

(98.5673 2.5553)(1.1114) 112.3876

y b sn  
  



1 1 1 1 4( / ) (1 )

0.1(72 / 98.5673) 0.9(0.7062) 0.7086

sn y sn    
  


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Procedures of Multiplicative Holt-Winters 
Method

• Step 5: Find the most suitable combination of 
, , and δ that minimizes SSE (or MSE)

• Example: Use Solver in Excel as an illustrationSSE
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Multiplicative Holt-Winters Method

• p-step-ahead forecast made at time T

• Example

ˆ ( ) ( ) ( 1,2,3,...)T p T T T p Ly T pb sn p    

33 32 32 33 4ˆ (32) ( ) (168.1213 2.3028)(0.7044) 120.0467y b sn     
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34 32 32 34 4ˆ (32) ( 2 ) [168.1213 2(2.3028)](1.1038) 190.6560y b sn     

35 32 32 35 4ˆ (32) ( 3 ) [(168.1213 3(2.3028)](1.2934) 226.3834y b sn     

36 32 32 36 4ˆ (32) ( 4 ) [(168.1213 4(2.3028)](0.8908) 157.9678y b sn     



Multiplicative Holt-Winters Method

• Example 

Forecast Plot for Sports Drink Sales

200

250
Observed values

Forecasts
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Additive Holt-Winters Method
• It is generally considered to be best suited to forecasting a 

time series that can be described by the equation:

– SNt: seasonal pattern
– IRt: irregular component

ttt IRSNty  )( 10 
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IRt: irregular component
• This method is appropriate when a time series has a linear 

trend with a constant (additive) seasonal pattern such that 
the level (β0+ β1t), growth rate (β1), and the seasonal pattern 
(SNt) may be slowly changing over time.



Additive Holt-Winters Method

• Estimate of the level 

• Estimate of the growth rate (or trend)

• Estimate of the seasonal factor

))(1()( 11   TTLTTT bsny  

11 )1()(   TTTT bb  
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• Estimate of the seasonal factor

where , , and δ are smoothing constants between 0 and 1,  
L = number of seasons in a year (L = 12 for monthly data, 
and L = 4 for quarterly data)

LTTTT snysn  )1()(  



Additive Holt-Winters Method
• Point forecast made at time T for yT+p

• MSE and the standard error s at time T

3,...) 2, 1,(      )(ˆ   psnpbTy LpTTTpT 


T
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Procedures of Additive Holt-Winters Method

• Consider the Mountain Bike example,
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Procedures of Additive Holt-Winters Method

• Observations: 
– Linear upward trend over the 4-year period
– Magnitude of seasonal span is almost constant as 

the level of the time series increases
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the level of the time series increases
 Additive Holt-Winters method can be applied to 

forecast future sales



Procedures of Additive Holt-Winters Method

• Step 1: Obtain initial values for the level ℓ0, the growth 
rate b0, and the seasonal factors sn-3, sn-2, sn-1, and sn0, 
by fitting a least squares trend line to at least four or five 
years of the historical data. 
– y-intercept = ℓ0; slope = b0
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– y-intercept = ℓ0; slope = b0



Procedures of Additive Holt-Winters 
Method

• Example 
– Fit a least squares trend line to all 16 observations
– Trend line

– ℓ = 20.85; b = 0.9809

ty t 980882.085.20ˆ 
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– ℓ0 = 20.85; b0 = 0.9809



Procedures of Additive Holt-Winters 
Method

• Step 2: Find the initial seasonal factors
1. Compute       for each time period that is used in finding 

the least squares regression equation. In this example, t
= 1, 2, …, 16. 

ˆty

1ˆ 20.85 0.980882(1) 21.8309y   
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Procedures of Additive Holt-Winters 
Method

• Step 2: Find the initial seasonal factors
2. Detrend the data by computing                 for each 

observation used in the least squares fit. In this 
example, t = 1, 2, …, 16. 

ttt yyS ˆ

8309.118309.2110ˆ111  yyS
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Procedures of Additive Holt-Winters 
Method

• Step 2: Find the initial seasonal factors
3. Compute the average seasonal values for each of the L

seasons. The L averages are found by computing the 
average of the detrended values for the corresponding 
season. For example, for quarter 1,
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Procedures of Additive Holt-Winters 
Method

• Step 2: Find the initial seasonal factors
4. Compute the average of the L seasonal factors. The 

average should be 0. 
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Procedures of Additive Holt-Winters 
Method

• Step 3: Calculate a point forecast of y1 from time 0 using the 
initial values
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Procedures of Additive Holt-Winters 
Method

• Step 4: Update the estimates ℓT, bT, and snT by using some 
predetermined values of smoothing constants.

• Example:  let  = 0.2,  = 0.1, and δ = 0.1

3079.22)9808.085.20(8.0))2162.14(10(2.0    

))(1()( 004111


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Procedures of Additive Holt-Winters 
Method

• Step 5: Find the most suitable combination of 
, , and δ that minimizes SSE (or MSE)

• Example: Use Solver in Excel as an illustrationSSE
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Additive Holt-Winters Method
• p-step-ahead forecast made at time T

• Example

3,...) 2, 1,(      )(ˆ   psnpbTy LpTTTpT 
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Additive Holt-Winters Method
• Example 

Forecast Plot for Mountain Bike Sales
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Chapter Summary

• Simple Exponential Smoothing
– No trend, no seasonal pattern

• Holt’s Trend Corrected Exponential Smoothing
– Trend, no seasonal pattern
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– Trend, no seasonal pattern

• Holt-Winters Methods
– Both trend and seasonal pattern

• Multiplicative Holt-Winters method
• Additive Holt-Winters Method


