ISING on the background γ radiation in the RISING fast beam campaign*

Piotr Bednarczyk^{1,2} and **Adam Maj**² for the RISING Collaboration

¹GSI Darmstadt, Germany ²IFJ PAN Kraków, Poland

*) Based on discussions with and contributions from:
 A.Bürger (Bonn), F.Camera (Milano), P.Doornenbal (GSI), J.Gerl (GSI),
 M.Górska (GSI), M.Kmiecik (Kraków), Zs. Podolyak (Surrey), M. Taylor (York),
 H.J.Wollersheim (GSI), Q. Zhong (Legnaro)

HISPEC/DESPEC MEETING Valencia (Spain)

15th-16th June

Layout of the fast-RISING experiment

Relativistic Coulomb E2 or E1 excitation of projectile, break-up

HECTOR SPECTRA

Hector time spectra (100 MeV/u ⁸⁴Kr beam)

∕100 MeV/u ⁸⁴Kr beam

AM1

Diapositiva 7

AM1 Adam Maj; 09/10/2003

Counts

h_baf_time_all_fragmentcut Entries

Mean

RMS

1150

1200

1250

h_baf_time_all_fragmentcut

421105

1065

104.6

Ge SPECTRA

15*7 crystals

A single gamma spectrum, no condition; ⁸⁶Kr primary beam, 100MeV/u ⁵⁴Cr secondary beam on Au target

- Natural radioactivity: ⁴⁰K, ²⁰⁸Pb,...
- ²⁷Al, ⁵⁶Fe(n,n') with fast neutrons, Doppler broadened
- ${}^{27}\text{Al}(p,2p){}^{26}\text{Mg}$; with $E_p \sim E_{\text{beam}}/u$
- Ge n capture

Time structure of an in-beam Ge spectrum selection: ¹³²Xe primary beam on Au target & Xe outgoing particle

Conclusion : A lot of high energy particles (protons) is emitted in the fragmentation reactions

In-beam Ge time distribution @ 1st EB ring

Ge multiplicity distribution

Conclusion: Radiation/particles of high energy irradiate several Ge detectors (mainly central) in the same time

Zs. Podolyak et al, Nucl. Phys. A722 (2003) 273c

Solution: Multiplicity filtering, when the number of crystals in a cluster is 1-3 (physically correct condition to detect the Compton scattering)

A BaF₂ (HECTOR) time distribution in coincidence with a cluster

Some other properties of the "bad" signals:

- For the outer rings the number of saturated signals is reduced
- With a primary beam (no fragmentation before a target) the bad signals contribute less
- The higher beam energy and the current the bigger contribution of the bad signals
- No matter if a reaction target is used or not

A general conclusion on that point:

A fragmentation in the FRS area is a source of the intensive background radiation seen by the Ge detectors.

Its nature could be high energy particles* (protons) affecting mainly detectors close to the beam line.

*However a pileup of several hundred gammas irradiating the whole array cannot be excluded (i.e. a very intense bremsstrahlung)

Low energy background in a Ge gamma spectrum

¹³⁴Cs secondary beam on Au target

Incoming-outgoing projectile selection, Au target

134Cs secondary beam on Au, projectile in-out

~600MeV/u ⁶⁸Ni secondary beam

Presence of the Au target enhances the prompt low energy gammas.

Spectra normalized according to the 400-1000 keV range

¹³⁴Cs secondary beam γ -particle

Position of the (prompt) bump very little depends on a detector angle

Zs. Podolyak et al, Nucl. Phys. A722 (2003) 273c

Bremsstrahlung components

- Radiative electron Capture of target electrons into bound states of the projectile
- states of the projectile Primary Bremsstrahlung of target electrons produced by the collision with the projectile
- Secondary Bremsstrahlung of high energy knock-out electrons re-scattering in the target

•
$$\sigma$$
 (atomic) ~ 10000 * σ (nuclear)

Energy (keV)

Components of the atomic background and their properties [31]. Z_p and Z_t are the atomic numbers of the projectile and target, respectively. E_b is the binding energy of the electron in the projectile (see the text for details).

Component	energy	Doppler	$\sigma(\theta)$	$\sigma(Z_p, Z_t, v)$
		shift		
REC	$\left[\left(\frac{1}{\sqrt{1-\beta^2}}-1\right)mc^2+E_b\right]\frac{\sqrt{1-\beta^2}}{1-\beta\cos\theta}$	yes	$sin^2 heta$	$Z_p^2 Z_t / v_p^5$
PB	$< \left(\frac{1}{\sqrt{1-\beta^2}}-1\right)mc^2\frac{\sqrt{1-\beta^2}}{1-\beta\cos\theta}$	yes	$sin^2\theta(1-\beta cos\theta)$	$Z_p^2 Z_t / v_p^2$
SEB	$< 2 \frac{\beta^2}{1-\beta^2} mc^2$	no	isotropic	$Z_p^2 Z_t^2 / v_p^2$

Conclusion:

•The prompt background may result from the (secondary ?) bremsstrahlung of electrons slowing down in the secondary target (Au). These electrons would be produced by fragments scattered on the FRS components.

(suppressed if there is no primary or secondary target)
The delayed component may be than related to the bremsstrahlung of the electrons in CATE (CsI) or in the environment.

(In this case the electrons could be also emitted from the secondary target)

What happens to the spectral shape, when one applies Doppler corrections?

v/c = 0.355

¹³²Xe (662 keV)

This is NOT bremmstrahlung! This IS compressed nearly constant background.

511 595 1014 7000 835 3000 200 100 500 Fe coulex - target 15 -12ns (145cm) 100 Al culex - CATE frame 4NM particles and 200 n induced 35 1 marshow of hold di il Contractor to and the second second "Why" 300 100

³⁷P produced in a fragmentation of ⁴⁸Ca

🗕 Tgamma