A Total Absorption Spectrometer for DESPEC

- Total Absorption Spectroscopy is the best method to measure beta strengths in β-decay (the only valid one far from stability)
- The highest possible efficiency and energy resolution of the spectrometer are important to minimize systematic errors in the de-convolution process
- The main source of systematic error is contamination/background signals

Jose L. Tain @ IFIC-Valencia

The beta-delayed neutrons and the subsequently emitted gansuscictys (may) become a contamination source

1. The problem is related to the way the data analysis is performed:

$$
\mathbf{d}_{\mathrm{i}}=\sum_{\mathrm{j}} \mathbf{R}_{\mathrm{ij}} \cdot \mathbf{f}_{\mathrm{j}}
$$

Inverse problem

d : spectrometer data
R : response to decay
f : beta feeding
2. Grand-daughter γ-rays are prompt with daughter γ-rays

Solution: "subtract" from data

- Measure them with high resolution (Ge array + neutron-detector array)
- Measure them with low resolution (TAS + neutron detector)

3. Neutrons interact through:

- elastic scattering
- inelastic scattering \rightarrow

- Recoils have low energies ($\left.E^{\max }=(\mathrm{A}-1)^{2} /(\mathrm{A}+1)^{2}\right)$ and their light is quenched ($\sim 3-5$)
- Long interaction times ($\mu \mathrm{s}$) \rightarrow delayed signals
\rightarrow neutrons are probably not the problem
\rightarrow MC simulations

Statistical cascades
Neutron MC simulation codes have a simplified photon generation
\rightarrow Replace by cascades generated with the nuclear statistical model
4. $\mathrm{A}^{3} \mathrm{He}$ counter placed inside a plastic moderator inside the TAS close to the source
$\rightarrow \mathrm{MC}$ simulation

5. The penetration of the β-rays needs some consideration since their MC is less accurate \rightarrow (plastic) absorber

$\rightarrow \mathrm{MC}$ simulation

Existing β-decay TAS:

St. Petersburg TAS

30		20		ε^{P}	ε^{\top}
7.7	10		1 MeV	0.47	0.87
4.6			5 MeV	0.25	0.71
			cylindricalNal(TI), 2 Crystals		

LBL TAS @ GSI

35

15		
	5	
	15	

	ε^{P}	ε^{T}
1 MeV	0.65	0.97
5 MeV	0.52	0.89

35
cylindrical
$\mathrm{NaI}(\mathrm{TI}), 1$ Crystal + Plug

INEL TAS

30

	ε^{P}	ε^{T}
1 MeV	0.65	0.90
5 MeV	0.45	0.76

cylindrical
Nal(TI), 1 Crystal

Lucrecia @ ISOLDE

Rocinante @ IFIC

25
:---:
1 MeV
5 MeV
:---
$\mathrm{BaF}_{2}, 12$ Crystals

TACs @ FZK and n_TOF

	ε^{P}	ε^{T}
1 MeV	0.90	0.98
5 MeV	0.80	0.91

spherical
$\mathrm{BaF}_{2}, 42$ Crystals
6. Spectrometer design:

- Large opening for the ion beam. Eventual beta absorber at the other side. Eventual neutron detector at the other side
\rightarrow cylindrical geometry
- $\mathrm{NaI} \rightarrow$ good energy resolution
- 15 cm of Nal make a good TAS, 20 cm a very good one (15 cm BaF2 $\approx 20 \mathrm{~cm} \mathrm{Nal}$)

- Large opening \Rightarrow loss of solid angle \rightarrow MC find length to maximize ε^{\top}

$\mathbf{R}_{\text {int }}$	$\mathrm{R}_{\text {ext }}$	L	$\begin{gathered} \varepsilon^{\mathrm{P}} \\ 1 \mathrm{MeV} \end{gathered}$	$\begin{gathered} \varepsilon^{\top} \\ 1 \mathrm{MeV} \end{gathered}$	$\begin{gathered} \varepsilon^{\mathrm{P}} \\ 5 \mathrm{MeV} \end{gathered}$	$\begin{gathered} \varepsilon^{\top} \\ 5 \mathrm{MeV} \end{gathered}$	$\begin{gathered} \varepsilon^{\top} \\ 1+5 \mathrm{MeV} \end{gathered}$	
5	20	40	0.82	0.91	0.59	0.85	0.986	1 Crystal ?
10	25	60	0.82	0.90	0.59	0.81	0.981	2×8 crystals
5	25	50	0.91	0.96	0.74	0.90	0.996	2×6 or 8 crystals
10	30	70	0.90	0.94	0.73	0.89	0.993	2×8 crystals

DESPEC-TAS Working Group

Debrecen (A. Algora)
Gatchina (L. Batist)
GSI (J. Gerl, M. Gorska et al.)
Uni. Autonoma Madrid (A. Jungclaus)
St. Petersburg (I. Izosimov)
Uni. Surrey (W. Gelletly, P. Regan, Z. P. Walker)
IFIC Valencia (B. Rubio, J.L. Tain)
Univ. Köln (P.Reiter)

St. Petersburg TAS vs. LBL TAS @GSI

BaF_{2}	$\sigma_{(\mathrm{n}, \gamma)}^{\mathrm{th}}$ (b)	E_{C} (MeV)	$\mathrm{E}_{\text {1stEx }}$ (MeV)
${ }^{19} \mathrm{~F}$	0.0096	6.6	0.11
${ }^{\text {nat }} \mathrm{Ba}$	1.15	$4.7-9.1$	0.2

NaI	$\boldsymbol{\sigma}^{\text {th }}$ (\mathbf{n}, γ) (b)	E_{C} (MeV)	$\mathbf{E}_{\text {1stEx }}$ (MeV)
${ }^{23} \mathrm{Na}$	0.53	6.9	0.44
${ }^{127} \mathrm{I}$	6.2	6.8	0.06

LaBr_{3}	$\sigma^{\text {th }}$ (\mathbf{n}, γ)	\mathbf{E}_{C} (MeV)	$\mathbf{E}_{\text {1stEx }}$ (MeV)
${ }^{79,81 \mathrm{Br}}$	6.9	$7.9,7.6$	0.2
${ }^{139 \mathrm{La}}$	9.0	5.2	0.17

