A Total Absorption Spectrometer for DESPEC

- Total Absorption Spectroscopy is the best method to measure beta strengths in β -decay (the only valid one far from stability)
- The highest possible efficiency and energy resolution of the spectrometer are important to minimize systematic errors in the de-convolution process
- The main source of systematic error is contamination/background signals

Jose L. Tain @ IFIC-Valencia

At DESPEC there is a strong motivation to measure β⁻ - strength far from stability

• A particular challenge is the application of this technique at the neutron rich side, due to the beta delayed neutrons

The beta-delayed **neutrons** and the subsequently emitted gamma-rays (may) become a contamination source

1. The problem is related to the way the data analysis is performed:

2. Grand-daughter γ -rays are prompt with daughter γ -rays

Solution: "subtract" from data

- Measure them with high resolution (Ge array + neutron-detector array)
- Measure them with low resolution (TAS + neutron detector)

- 3. Neutrons interact through:
 - elastic scattering
 - inelastic scattering $\rightarrow \gamma$ -rays
 - capture $\rightarrow \gamma$ -rays

• Recoils have low energies ($E^{max} = (A-1)^2/(A+1)^2$) and their light is quenched (~3-5)

• Long interaction times (μ s) \rightarrow delayed signals

 \rightarrow neutrons are probably not the problem \rightarrow MC simulations Neutron MC simulation codes have a simplified photon generation

> → Replace by cascades generated with the nuclear statistical model

> > 210Bi

E1(GLO)

M1 (LOR)

E2 (LOR)

10⁻³ ×

-104 Ш

10⁻⁴

10⁻⁶

10-7

10-8

10⁻⁹

10-10

10-11

10⁻¹²

4. A ³He counter placed inside a plastic moderator inside the TAS close to the source

→ MC simulation

5. The penetration of the β -rays needs some consideration since their MC is less accurate \rightarrow (plastic) absorber

 \rightarrow MC simulation

Existing β -decay TAS:

- 6. Spectrometer design:
 - Large opening for the ion beam. Eventual beta absorber at the other side. Eventual neutron detector at the other side
 → cylindrical geometry
 - Nal \rightarrow good energy resolution
 - 15 cm of Nal make a good TAS, 20 cm a very good one (15 cm BaF2 ≈ 20 cm Nal)

R _{int}	R _{ext}	L	_٤ ٩ 1MeV	ε ^τ 1MeV	ε ^Ρ 5MeV	ε ^τ 5MeV	ε ^т 1 + 5 MeV	
5	20	40	0.82	0.91	0.59	0.85	0.986	1 Crystal ?
10	25	60	0.82	0.90	0.59	0.81	0.981	2× 8 crystals
5	25	50	0.91	0.96	0.74	0.90	0.996	2× 6 or 8 crystals
10	30	70	o.90	0.94	0.73	0.89	0.993	2× 8 crystals

→ Effect of dead material and ancillary detectors → MC simulations

DESPEC-TAS Working Group

```
Debrecen (A. Algora)
Gatchina (L. Batist)
GSI ( J. Gerl, M. Gorska et al.)
Uni. Autonoma Madrid (A. Jungclaus)
St. Petersburg (I. Izosimov)
Uni. Surrey (W. Gelletly, P. Regan, Z. P. Walker)
IFIC Valencia (B. Rubio, J.L. Tain)
Univ. Köln (P.Reiter)
```

St. Petersburg TAS vs. LBL TAS @GSI

BaF ₂	σ th _(n,γ) (b)	E _c (MeV)	E _{1stEx} (MeV)
¹⁹ F	0.0096	6.6	0.11
^{nat} Ba	1.15	4.7-9.1	0.2

Nal	σ th _(n,γ) (b)	E _c (MeV)	E _{1stEx} (MeV)
²³ Na	0.53	6.9	0.44
127	6.2	6.8	0.06

LaBr ₃	σ th _(n,γ) (b)	E _c (MeV)	E _{1stEx} (MeV)
^{79,81} Br	6.9	7.9,7.6	0.2
¹³⁹ La	9.0	5.2	0.17

