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Chapter 1

Introduction

This present work correspond to the final step in order to obtain the
degree of “Master in Advanced Sciences of Modern Telecommunication”
offered by Universidad de Valencia, in Valencia city, Spain (20). The
main idea behind this report is try to put together the concepts learned
through the different subjects that compound Master Program via a
specific research methodology.

For me is attractive the large number of potential new applications
that require information provided by sensors. For example, applications
in medicine and patient care, precision agriculture, environmental mon-
itoring, energy efficiency, households, industrial environments, security,
automation, etc. In the other hand, thanks to advances in micro-electro-
mechanical systems and wireless communications is possible to build
smaller and portable autonomous devices, capable of self-organized, and
communicate through the air in order to obtain values of a phenomenon
under study in a cooperative way, giving rise to the concept of a wireless
network composed by sensor nodes, a Wireless Sensor Network.

Sensor networks differ from traditional networks in many aspects,
such as nodes or sensors that have a dual function: are the endpoints
of the network and formed the communication network through which
the data are transported. Also, the sensor nodes, are limited in life-
time, storage and processing capacity. These factors combined with the
specific requirements of each application is expressed in limitations or
constraints that must be solved through the development of new (or im-
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1. INTRODUCTION

provement the existing) hardware platform, communication protocols,
management tools and applications. Many research groups are working
on sensor networks, using techniques of traditional networking as well as
also techniques from other scientific areas, e.g. geostatistic techniques,
optimization techniques, cross-layer approach, etc.

One of the most famous and useful geostatistic technique is Kriging.
The Kriging Technique is a process at which is possible interpolate or
estimate the value of a variable under study in terms of discrete val-
ues obtained from the same variable at different spatial points within
a given region of interest. It is a spatial interpolation method. The
discrete variable values are modeled so that it can represent the spatial
correlation between them, giving rise to the function Variogram. Then
we can form a spatial map representing the variation of the variable in
the area without need of take samples at each point in the region.

The Kriging Technique is useful to solve some inherent problems from
sensor networks such as: minimizing the number of sensors deployed,
build a spatial map of the variable, helps choose the best place to locate
the sensors, optimize the use of energy, among other options.

This report present an investigation of the recent literature involving
the union of the two concepts described above, i.e. a survey on sensor
networks and Kriging Techniques. The research was made in three main
sites: ACM, Elsevier and IEEE Explorer considering the main words
Kriging and Wireless Sensor Networks and the papers found are de-
scribed under various criteria, such as the problem of sensor network
that tries to solve, contribution, methodology, characteristics of the sen-
sor network used, etc. The main objective of this survey is to show the
State of the Art of the usage of geostatistical Kriging techniques in sen-
sor networks to help those researchers who are facing a similar problem
and to the generation of new ideas to help improve the performance and
application of sensor networks.

This report is not a detailed study of spatial interpolation techniques
applied to sensor networks. The Kriging Technique is not the only one
who can carry out this task, but it is one that has received more at-
tention. This report can serve as a milestone for future experimental
research on the implementation of the Kriging technique, or research
that taking account and compare different interpolation techniques.

The rest of the report is organized as follows: In chapter 2, the sensor
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networks are presented. Its applications, design considerations, commu-
nications protocols and current challenges are described. In Chapter 3
the fundamentals of the Kriging technique are discussed by addressing
the concepts of empirical variogram and its models with the two types of
Kriging interpolation more common: simple and ordinary Kriging. Also
two examples of spatial interpolation process are developed, one shows
the way to calculate the weights in a Kriging System and the second ex-
ample simulate the estimation process with the statistical software R and
its geoR package. Next, the results of the literature survey are shown in
Chapter 4 through the description of the selected works. The advantages
and disadvantages about Kriging interpolation technique are provided
in Chapter 5; some works that deal with Kriging and other interpola-
tion techniques, for example Inverse Distance Weight, are provided too.
Finally, the report ends with a final remarks section in Chapter 6.
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Chapter 2

WSN Wireless Sensor

Network

2.1 Introduction

“A Wireless Sensor Network (WSN) is a collection of spatially dis-
tributed smart nodes that use wireless communication for build a network
with the aim of monitor, in a cooperative way, an interested parameter
within an determined region.”

These smart nodes (or autonomous sensors) are low power devices
equipped with one or more sensors, a processor, memory, a power sup-
ply, a radio, and an actuator (2) (37). Often, the spatial distribution
of the nodes is not pre-determined. This allow random deployment in
inaccessible or disaster relief zones. Of course that in a controlled envi-
ronment, the deployment can follow a pre-defined order. The authors in
(37) classified WSNs into two types: structured and unstructured. An
unstructured WSN is one that contains a dense collection of nodes de-
ployed in an ad hoc or random manner. The network is left unattended
to perform monitoring and reporting functions. Managing and detecting
failures is difficult since there are so many nodes. In the other hand,
in a structured WSN, all or some of the sensor nodes are deployed in
a pre-planned manner improving management and maintenance of the
network.
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2. WSN WIRELESS SENSOR NETWORK

Features that must have a WSN are flexibility, fault tolerance, high
sensing fidelity, low-cost, rapid deployment and self-organizing capabili-
ties. These characteristics are attractive for develop applications in dif-
ferent research areas such as military, security, natural disaster, biomed-
ical health, hazardous environment exploration and seismic sensing. In
words of Yick, Mukherjee and Ghosalin (2): “we envisioned that, in fu-
ture, wireless sensor networks will be an integral part of our lives, more
so than the present-day personal computer”.

But, this new technology presents unique features and requirements
that are not take account by neither traditional hierarchical networking
nor ad hoc networking techniques. Some of these unique features are:

• A huge number of sensor nodes in a sensor network,

• sensor nodes can be densely deployed,

• sensor nodes are prone to failure,

• sensor wireless network suffer frequently topology changes,

• sensor wireless network use a multihop infrastructureless architec-
ture,

• sensor nodes use mainly broadcast communication,

• sensor nodes are limited in power, computational capacities, and
memory,

• sensor nodes don’t have global identification, ID.

Due to unique features described above, a set of constraints are
introduce and should be addressed by protocols and algorithms used
in WSNs. Some constraints are: limited energy, short communication
range, low bandwidth, limited storage and processing capabilities in each
node. Then, is necessary introduce new design concepts, create (or im-
prove the existing) communication protocols, build new applications,
and develop new algorithms.

In the remainder of this chapter current applications, factors and key
issues to consider in the design of a WSN are described briefly. Next,
some existing communication protocols used are displayed. Finally, the
challenges and problems which face the WSN are discussed.

6



2.2 Applications

2.2 Applications

Today exist different types of sensors, such as seismic, low sampling
rate magnetic, thermal, visual, infrared, acoustic, radar. They are able
to monitor different ambient conditions: temperature, humidity, vehic-
ular movement, lighting condition, pressure, soil makeup, noise levels,
presence or absence of objects, mechanical stress levels, characterization
of an object (speed, direction, size). Also, the sensor can be used for
continuous sensing, event detection, location sensing, and local control
of actuators.

When put together the individual sensor capabilities in a cooperative
way around a common task, i.e. in a network, a great number appli-
cations are available and new potential application can appear. Some
applications are present in diverse areas, e.g., military, environment,
health, home, commercial, space exploration, chemical processing and
disaster relief.

In recent literature, two main WSN applications categories are ex-
posed: monitoring applications and tracking applications. Monitoring
applications include indoor/outdoor environmental monitoring, health
and wellness monitoring, power monitoring, inventory location monitor-
ing, factory and process automation, and seismic and structural moni-
toring. Tracking applications include tracking objects, animals, humans,
and vehicles.

The curious reader can find a good list of different application in (2)
and (37). Some of them have been deployed and tested in real environ-
ment. The main issue about WSN applications is that each application
needed specific hardware platforms, software development and new or
modified communication protocols. Today, a lot of effort is dedicated
to obtain more reliable and robust applications based on information
provided by WSN.

2.3 Factors Design and Key Issues

When design an WSN for an specific application dont forget that
this kind of network have particular conditions. E.g., each node plays
the dual role of data originator and data router (remember the unique
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2. WSN WIRELESS SENSOR NETWORK

features described in section 2.1 too). Then, is necessary considers sev-
eral factors that influences the WSN design: fault tolerance, scalability,
production cost, operating environment, sensor network topology, hard-
ware constraints, transmission media and power consumption. Below
some of these factors are discussed (2).

• Fault tolerance: Is the ability to sustain sensor network function-
alities without any interruption due to sensor node failures. The
fault tolerance level depends on the application of the sensor net-
works. The physical and logical topology must be developed with
this in mind.

• Scalability: Some applications include a huge number of sensors.
The WSN must be able to work with this great number, including
areas with dense deployment of sensors.

• Production cost: If the cost of the WSN is more expensive than
deploying traditional sensors, then the sensor network is not cost-
justified.

• Hardware constraints: Associated with the size of the nodes and
his energy consumption.

• WSN Topology: Sensor nodes must be capable of self-organized
themselves and support device failures. Device failures is a com-
mon event due to energy depletion or destruction. Then, the WSN
are prone to topology changes after deployment.

• Ambient: The WSN’s nodes operate under extreme conditions like
high pressure, heat, cold, noisy environment, etc.

• Transmission Media: Radio Frequency (into ISM band), infrared
and optical technologies are available for data transmission for
sensors communications.

• Power consumption: In WSN power efficiency is an important
performance metric, directly influencing the network lifetime, and
must be take account by the application’s protocols. The power
consumption is divided into three domains; sensing, communica-
tion, and data processing.
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2.4 Communication Protocols

The main constraint in WSNs is the power consumption (or energy
conservation) issue. It differ from traditional networks in the limited en-
ergy capacity of the nodes (sensors). The common way to supply energy
is via a battery that deplete its charge in time. Hence, the design of a
WSN must be careful with the power consumption in all levels: hard-
ware, communication protocols and applications. In (37) are discusses
the Energy harvesting and Minimizing energy concepts. Energy harvest-
ing involves nodes replenishing its energy from energy source. Potential
energy sources include solar cells, vibration, fuel cells, acoustic noise an a
mobile supplier. Minimizing energy (or energy conservation) maximizes
network lifetime and is addressed through:

• Efficient and reliable wireless communication,

• intelligent sensor placement (with adequate coverage),

• secure and efficient storage system,

• data aggregation and

• data compression.

2.4 Communication Protocols

The WSN nodes are deployment within an interesting region or field
in a random or pre-determined manner without infrastructure. The
WSN’s node takes samples from the environment and transmit this in-
formation to an specific task node, the sink, in charge of collect the data
from all sensor. Then, commonly the sink is connected to an infrastruc-
ture network where the data are processed. Figure 2.1 (2) exposes this
situation.

The communication of sensor nodes is regulated through a set of
communication protocols in order to set a standard data representa-
tion, signaling, and error detection required to send information over
the wireless media. The protocol stack used in WSN is composed by
five layers: Application, Transport, Network, Data Link, and Physical.
Furthermore, exists three different Management Planes with the aim of
support all layers in terms of task, mobility, and power. The protocol
stack and the management planes are exhibited in Figure 2.2 (2).
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2. WSN WIRELESS SENSOR NETWORK

Figure 2.1: Sensors nodes in a region.

Figure 2.2: WSN Protocol Stack.
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2.4 Communication Protocols

The protocol stack combines power and routing awareness, integrates
data with networking protocols, communicates power efficiently through
wireless medium, and promotes cooperative efforts of sensor nodes. The
layers of the protocol stack are described below;

• Application Layer: Different types of application software can be
built with application-specific characteristics and requirements. It
is the interface between the network and user.

• Transport Layer: Helps to maintain the flow of data if the appli-
cation requires it.

• Network Layer: Takes care of routing the data supplied by the
transport layer.

• Data Link Layer: Management of medium access control, in a
power aware way and avoiding (or minimizing) packet data colli-
sions.

• Physical Layer: Deal with simple and robust modulation, trans-
mission and receiving techniques.

The management plane’s aim is coordinate the collaboration of the
sensor nodes in order to prolong the WSN lifetime. The planes deal
with;

• Power Management Plane: How a sensor node uses its power.

• Mobility Management Plane: Detects and registers the movement
of sensor nodes.

• Task Management Plane: Balances and Schedules the sensing
tasks given to a specific region.

The protocol stack must be energy efficient in term of communica-
tions and must be able to work efficiently across all sensor nodes. But
the traditional layered approach adds overhead in each layer, becoming
inefficient in terms of energy and effectiveness. If the protocol stack is
consider like a system more than a individual layers, the information
can be shared among layers, minimizing the overhead and taking it to a
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cross-layer approach. Cross-layer designs improve performance and op-
timize interaction between layers via the sharing of information across
layers. Some recent research and open research issues about cross-layer
design are described in (37).

2.5 Challenges

The flexibility, fault tolerance, high sensing fidelity, low-cost and
rapid deployment characteristics of new WSNs technology, are useful
for many applications in different research fields. These specific char-
acteristics coupled with features and requirements of each application
creates constraints that should be take account in the design and de-
ployment of WSNs. Furthermore, must be able to tackle new problems
not shown in other networks such as:

• Coverage problem,

• frequent topology changes,

• limited energy resources,

• sensor nodes provide discrete values of the phenomena instead to
continuous information in time and/or space,

• application software that be capable of represent the raw data
supplied by sensor nodes in a readable way,

• determine the minimum number of sensor nodes for a specific sens-
ing task,

• determine the place where each sensor node will be placed inside
a region.

Some of these problems can be addressed by the use of geostatistics
techniques. In particular, the Kriging Techniques based over statistical
approach of a random process can be helpful in order to estimate the
optimal sensor placement locations and/or estimate the value of the
interesting parameter (from phenomena under study) in places where it
is impossible put a sensor node. Another point of view is use the Kriging
technique in the coverage hole problem (35) (1) for reach an adequate
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cover in the desired area using efficiently the energy resources. In the
following chapter the fundamentals of Kriging techniques will be show.
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Chapter 3

Kriging: A Geostatistical

Tool

3.1 Introduction

In the 50’s decade the useful mineral reserves evaluation was the
fundamental activity that motivated the application of the theory of
Random Functions to the reconnaissance and estimation of natural phe-
nomenon. That is the Geostatistic. G. Matheron (22) (24) (23) coined
this term from previous work of H. Sichel (31), D. Krige (16), and B.
Matern (21). In the last 30 years the Geostatistic has been carried out
and consolidated as an applied science that solves practical and concrete
problems. Geostatistic study the variables distributed in space from a
representative part of the phenomenon under studies. The fundamental
element used is the analysis of the spatial distribution of the available
information. In this process, the best linear and unbiased estimator is
obtained, that is the Kriging, where the variance of the estimation error
is minimized. That is nowadays used in mining companies and is every
time most used in other fields of the Earth’s Science. Lets see formal
definition:

From G. Matheron (22) (24) (23), a geological point of view: “Geo-
statistics is the application of the formalism of random functions to the
reconnaissance and estimation of natural phenomena. Is used in a ge-
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3. KRIGING: A GEOSTATISTICAL TOOL

ological context to denote theory and methods for inferring ore reserves
from data spatially distributed throughout an ore body.”

From N. Cressie (7), with a universal point of view: “For me, geo-
statistics has thrown off its earthly shackles and has taken on a more
universal role, one that is concerned with statistical theory and applica-
tions for processes with continuous spatial index.”

The geostatistic’s origins are found in mining. Sichel noted the asym-
metrical distribution of mineral content of the gold deposits in South
Africa, it was matched to a log-normal distribution and expressed the
formulas for this distribution. The weakness of this technique is that it
assumes data independence, contradicting the fact that there were richer
areas than others. This weakness was remedied by Krige, who proposed
a variant of the method of moving averages (Def. Method of Moving
Averages: A statistical method used to analyze a data set mode to cre-
ate series of points averages. So moving averages are a list of numbers
in which each is the average of a subset of the original data). Finally
the rigorous formulation and solution of the problem of estimation was
given by Matheron in 1962 [4] who states that geostatistics is the appli-
cation of theories of regionalized variables (Def. Regionalized Variables:
1. Variable distributed in space representing a spatial correlation struc-
ture. 2. Numerical variables distributed in space. 3. Mathematically, a
function that takes a value for each point in space). Regionalized vari-
ables have two complementary aspects: one random, associated with
erratic and unpredictable variations of the variable, and a structured, or
deterministic, general appearance that reflects the overall characteristics
of variation of regionalized phenomenon. Due to the random aspect of
the regionalized variable, it is impossible to describe by a continuous
function.

The aim of geostatistics is the characterization of a natural phe-
nomenon, leading to various types of applications. Of these, highlights
the estimated value of a parameter of interest based on a set of sam-
ples. In addition to providing estimates of the parameter, provides a
measure of their uncertainty. Therefore, geostatistics can help to select
the sampling points so as to minimize the uncertainty of estimation.
Many environmental processes exhibit spatial variations on which can
be applied geostatistics techniques. These techniques had been used in
sciences such as geology, mining, hydrology, meteorology, epidemiology,
etc.
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3.2 Background

As mentioned earlier, geostatistics considers the variables as random
functions with two components, deterministic and random, with the aim
of represent the variable’s spatial dependence [7]. The deterministic sec-
tion represents non spatial influences and random section is interpreted
as the realization of a random field. This random field (spatial stochastic
process) can be characterized by statistical moments, i.e. as the covari-
ance function or variogram (or semivariogram). This characterization
is useful to interpolate values of the random field in positions where
not samples exist, based on the sampled values at nearby positions, i.e.
applying Kriging technique. In summary, the variogram describe the
spatial correlation and Kriging employs the variogram model in order to
generates the best linear unbiased estimate at each location.

This chapter continues with section 3.2 where fundamentals concepts
about interpolation are discuss. Next, in section 3.3 the Variogram func-
tion is presented with its estimation process and its empirical models.
Then, section 3.4 exhibit the Kriging technique and its two more im-
portant types, Simple Kriging and Ordinary Kriging. Finally in section
3.5 two examples are shown; In the first example the weights from a
Kriging System are calculated. In the other example, a spatial interpo-
lation process is simulated using the statistical software R and its geoR
package. Both examples consider the Ordinary Kriging Technique.

3.2 Background

Let D denote a region of interest, where D ⊂ Rd (Euclidean space,
dimension d). In many real situation, d = 2. Each point s = (x, y) ∈ D
can be described by an x and y coordinate in the plane. Within the
region D we want to measure some variable z. Let z(s) denote the
random variable that can be measured at location s in the region. In
practice, measurements are obtained at a finite number n of points. Data
then looks like:

z(s1), z(s2), ..., z(sn). (3.1)

A very simple model for geostatistical data is

z(s) = µ+ ε(s). (3.2)

17



3. KRIGING: A GEOSTATISTICAL TOOL

The error ε(s) is assumed to have a mean of zero in which case

E[z(s)] = µ. (3.3)

Another common assumption is that of homoskedasticity or homoscedas-
ticity for all points s ∈ D. In statistics, a sequence or a vector of random
variables is homoscedastic if all random variables in the sequence or vec-
tor have the same finite variance, .i.e.

var[z(s)] = σ2. (3.4)

Now, remember that auto-covariance function for a stationary time
series only depends on the lag between the time points; Similarly, for
geostatistical data, the covariance functions for the response z at two
different points s1 and s2 depend only on the difference in locations
(distance and direction) between the two points:

cov[z(s1), z(s2)] = c(s1 − s2) (3.5)

for some function c. Spatial data that satisfy the conditions of 3.2, 3.3
and 3.4 is called second-order stationary. Additionally, if the covariance
function depends only on the difference between the two points, then it
is called intrinsically stationary. Furthermore, if the covariance function
depends only on the distance between two points, s1 and s2, the spatial
process is called isotropic. A spatial process is said to be anisotropic if
the dependence between the response z at two points depends not only
on the distance, but also on the direction of that difference. Anisotropic
process are commonly due to the underlying process evolving differen-
tially in space.

3.3 Variogram

The function Variogram is used for spatial data, its purpose is repre-
sent the relationship between the measured values depending on the dis-
tance that separates them inside an interesting region. In other words,
represents an index of change that shows an variable respect to dis-
tance. Consider the sampled value of the variable at two different loca-
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3.3 Variogram

tions z(s1) and z(s2) inside region D. If the variance of the difference
z(s1)− z(s2) depends only on the difference s1 − s2, is possible write

var[z(s1)− z(s2)] = 2γ(s1 − s2), (3.6)

the function 2γ is called Variogram and function γ is the Semivari-
ogram (22).

Now, suppose constant mean µ(s) = 0 for measured values at each
point in region D. Is possible write

var[z(s1)− z(s2)] = E[(z(s1)− z(s2))2]. (3.7)

For definition of variogram,

γ(s1 − s2) = 0.5E[(z(s1)− z(s2))2] (3.8)

and

0.5E[(z(s1)− z(s2))2] = 0.5E[(z(s1)− z(s2) + µ− µ)2]

= 0.5[E[(z(s1)− µ)2] + E[(z(s2)− µ)2]

− 2E[(z(s1)− µ)(z(s2)− µ)]]

= 0.5[V ar(z(s1)) + V ar(z(s2))− 2Cov(z(s1), z(s2))]

= σ2 − Cov(z(s1), z(s2))

= σ2[1− ρ(z(s1), z(s2))],

(3.9)

assuming the variance is also constant through out the region. Here, ρ is
the auto-correlation function between two spatial points. Let h denote
the distance (or lag) between the two points z(s1) and z(s2). Hence, the
variogram for an isotropic process in terms of auto-correlation function
can be written as

2γ(h) = 2σ2(1− ρ(h)). (3.10)

In terms of auto-covariance function, the variogram function become
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Figure 3.1: A theorical Gaussian Model Variogram.

γ(h) = σ2 − Cov(h). (3.11)

From the previous expression is easy to see that h become larger, the
variogram converges to σ2. Figure 3.1 shows a theoretical variogram. As
the distance h gets larger, the variogram values increase indicating that
as points get farther apart, the expected difference between the measured
values at those two points increases as well.

The variogram can be described based on the follow attributes (see
Figure 3.1):

1. The Sill: Correspond to the maximum height of the variogram
curve. As h gets large, the correlation (and hence covariance)
between the measured values at two points separated by a distance
h become independent. In this case, the sill in the variogram plot
corresponds to two times the variance.

2. The Range: The range is the distance h such that pairs of sites
further than this distance apart are negligibly correlated. The
range of influence is sometimes defined as the point at which the
curve is 95/100 of the difference between the nugget and the sill.

3. The Nugget Effect: Is logical expect that 2γ(0) = 0, i.e. V ar[z(s1)−
z(s2)] should equal zero if s1 = s2. However, this is usually not
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the case. As the distance h goes to zero, there tends to be a nugget
effect due to measurement error and micro-scale variation.

In practice, the variogram is estimated based on the measured val-
ues take in different locations inside region D, Then, the called empirical
variogram is obtained. But, in order to be useful, this empirical vari-
ogram need be replaced by a model. The next two sub-sections deal
with the variogram estimation and its mathematical models.

3.3.1 Estimation of the Variogram

The classical method of estimating the variogram, which corresponds
to the method of moments estimator, is given by (22):

2γ̂(h) =
1

|N(h)|
∑
N(h)

[z(si)− z(sj)]2, (3.12)

where N(h) is the set of all distinct pairs of points z(si); z(sj) such
that ‖si − sj‖ = h. In practice, the data is smoothed to generate an
estimate of the variogram. For instance, the data can be partitioned
into groups where observations in particular groups are within a certain
range of distance apart and then using the average squared difference of
the points in each group to replace the sum in 3.12.

The method of moments is not strong for extremes values z(si). Fur-
thermore, some authors consider the data distribution is biased. Cressie
and Hawkins in 1980 (25) proposes an unbiased estimator for 2γ(h). For
further details see (7).

3.3.2 Variogram Models

The Kriging technique will need access to variogram values for dis-
tances other than those used in the empirical variogram. Furthermore,
the variogram used in Kriging process need to obey certain numerical
properties (needs to be non-negative definite) in order to be trusted.
Therefore, is necessary to adjust the empirical variogram in a model.
Some of the most common models are presents below, where S is the
sill, a is the influence range and γ(0) = c the nugget effect.
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1. Spherical Model:

γ(h) =

{
c+ (S − c)[1.5(ha )− 0.5(ha )3], for h ≤ a
c, otherwise.

(3.13)

2. Exponential Model:

γ(h) = c+ (S − c)[1− (e)
−3h
a ]. (3.14)

3. Gaussian Model:

γ(h) = c+ (S − c)[1− (e)
−3h2

a2 ]. (3.15)

4. Power Model:

γ(h) = c+Ahw. (3.16)

In some cases, the empirical variogram can be modeled by a linear
combinations of models.

3.4 Kriging

“In geostatistics, correspond to process of predict the ore grade in a
mining block from observed samples.” (22)

“Minimum-mean-squared-error method of spatial prediction that (usu-
ally) depends on the second-order properties of the process Z(·)” (23) (7)

Consider a linear (or rather affine) estimate ẑ0 = ẑ(s0) at location
s0 based on N measurements z = [z(s1), ..., z(sn)]T = [z1, ..., zn]T ,

ẑ0 = w0 +

N∑
1

wizi = w0 + wT z, (3.17)

where wi are the weights applied to zi and w0 is a constant.

Consider zi as realizations of stochastic variables Zi, where Z̄ =
[Z(s1), ..., Z(sn)]T = [Z1, ..., Zn]T . Furthermore, consider Z(s) as con-
sisting of a mean value and a residual Z(s) = µ(s) + ε(s). Suppose the
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residual with mean value zero and constant variance σ2, i.e. E[ε] = 0
and V ar[ε] = σ2. For the linear estimator is possible write

Ẑ0 = w0 + w̄T Z̄. (3.18)

The estimation error z0 − ẑ0 is unknown. But using the expectation
value of the estimation error, the following relation is established

E[Z0 − Ẑ0] = E[Z0 − w0 − w̄T Z̄] = µ0 − w0 − w̄T µ̄, (3.19)

where µ0 = µ(s0) is the expectation value of Z0 and µ̄ is a vector of
expectation values for Z̄

µ̄ =

µ(s1)
...

µ(sn)

 =

µ1...
µn

 . (3.20)

The estimator should be unbiased or central, i.e., E[Z0 − Ẑ0] = 0 or

µ0 − w0 − w̄T µ̄ = 0. (3.21)

The variance of the estimator error is

σ2E = V ar[Z0 − Ẑ0]

= V ar[Z0] + V ar[w0 + w̄T Z̄]− 2Cov[Z0, w0 + w̄T Z̄]

= σ2 + w̄T (Cw − 2Cov[Z0, Z̄]),

(3.22)

where C is the dispersion of variance-covariance matrix of the stochas-
tic variables Z entering into the estimation, derived from the input vari-
ogram model. The idea behind Kriging is find the linear estimator which
minimizes the estimation variance.
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3.4.1 Simple Kriging

In simple Kriging SK is assume that µ(s) is known. From equations
3.18 and 3.21

Ẑ0 − µ0 = w̄T (Z̄ − µ̄). (3.23)

The weights wi are found by minimizing the estimation variance σ2E .
This is done by setting the partial derivate to zero

∂σ2E
∂w

= 2Cw − 2Cov[Z0, Z̄] = 0, (3.24)

which results in the SK system

Cw = Cov[Z0, Z̄] (3.25)

or

C11 · · · C1n
...

. . .
...

Cn1 · · · Cnn


w1

...
wn

 =

C01
...

C0n

 , (3.26)

where Cij , i, j = 1, ..., n is the covariance between points i and j among
the n points, which enter into the estimation of point 0. C0j , j = 1, ..., n
is the covariance between point j and point 0, the point to which inter-
polate. These covariance are obtained from the variogram model.

The minimized squared estimation error, termed the simple Kriging
variance, is

σ2SK = σ2 + w̄T (Cw − 2Cov[Z0, Z̄])

= σ2 − w̄TCov[Z0, Z̄].

(3.27)

In SK the mean value µ(s) is known. In practice it is often assumed
constant for the entire domain (or study area). Another approach is

24



3.4 Kriging

estimate the value of µ(s) or construct an interpolation algorithm which
does not require knowledge of the mean field.

3.4.2 Ordinary Kriging

In ordinary Kriging OK the mean µ(s) is constant and equal to µ0
for Z0 and the n points that enter into the estimation of Z0. From
equations 3.19 and 3.21

E[Z0 − Ẑ0] = µ0(1− w̄T 1̄)− w0 = 0 (3.28)

for any µ0. 1̄ is a vector of ones. This is possible only if w0 = 0 and
w̄T 1̄ = 1.

The weights wi are found by minimizing σ2E under the constraint
w̄T 1̄ = 1. A standard technique for minimization under a constraint is
introducing a function F with a so-called Lagrange Multiplier (here−2λ)
which is multiply buy the constraint, set to zero and then minimizing

F = σ2E + 2λ(w̄T 1̄− 1) (3.29)

without constraints. Again the partial derivatives are set to zero

∂F

∂w
= 2Cw − 2Cov[Z0, Z̄] + 2λ1̄ = 0

∂F

∂λ
= 2(w̄T 1̄− 1) = 0,

(3.30)

which results in the OK system

Cw + λ1̄ = Cov[Z0, Z̄]

1̄T w̄ = 1

(3.31)

or

25



3. KRIGING: A GEOSTATISTICAL TOOL


C11 · · · C1n 1

...
. . .

...
Cn1 · · · Cnn 1

1 · · · 1 0



w1
...
wn

λ

 =


C01

...
C0n

1

 . (3.32)

The values requested for Cij are found as described in the previous
section on SK.

The minimized squared estimation error, termed the ordinary Krig-
ing, variance is

σ2OK = σ2 + w̄T (Cw − 2Cov[Z0, Z̄])

= σ2 − w̄TCov[Z0, Z̄]− λ.
(3.33)

OK implies an implicit re-estimation of µ0 for each new constellation
of points. This is an attractive property making OK well suited for
interpolation in situations where the mean is not constant (i.e., in the
absence of first order stationary).

3.5 Examples

3.5.1 Weights on Ordinary Kriging System

In this example the weights from an OK system will be calculated.
Consider the 1-dimensional system from Figure 3.2. The sampled values
at these locations are: z1 = 1, z2 = 3, z3 = 2.

In the other hand, consider that the empirical variogram is modeled
with a spherical model variogram 3.13 with parameters S = 1, a = 6, c =
0. Finally, remember that the equation 3.11 bring an expression for the
auto-covariance function

Cov(h) = σ2 − γ(h), (3.34)

where σ2 = S = 1.
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Figure 3.2: Locations in 1 dimension.

Therefore, with the previous considerations is possible to calculate
the values of the variogram and auto-covariance functions at different
distances. These values are shown in Table 3.1.

h γ(h) Cov(h)

0 0.0000 1.0000

1 0.2477 0.7523

2 0.4815 0.5185

3 0.6875 0.3125

4 0.8519 0.1481

5 0.9606 0.0394

6 1.0000 0.0000

Table 3.1: Variogram and Auto-Covariance functions.

Then, the OK system become


1.0000 0.7523 0.0394 1
0.7523 1.0000 0.1481 1
0.0394 0.1481 1.000 1

1 1 1 0



w1

w2

w3

λ

 =


0.5185
0.7523
0.3125

1

 . (3.35)

The solution of the OK System is w1 = −0.0407, w2 = 0.7955, w3 =
0.2452, λ = −0.0489 and σ2OK = 0.3949.
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3.5.2 Ordinary Kriging using R and geoR

In this section a simple example is developed to help further under-
stand the Kriging technique. Through the statistical software R (28) and
the specific R package for geostatistical analysis geoR (29) the example
is illustrated. R is a language and environment for statistical computing
and graphics that provides a wide variety of statistical and graphical
techniques, and is highly extensible. R is available as Free Software un-
der the terms of the Free Software Foundation’s GNU General Public
License in source code form. Think about R like an environment within
which statistical techniques are implemented. R can be extended via
additional specific purpose modules, i.e. packages.

The dataset to consider for this example is a dataset included in
the geoR package, named s100. This set contain simulated information
about 100 samples, its location and the value of the interest param-
eter. Below is possible observe a summary of the dataset. Further-
more, Appendix A.1 contains the dataset’s detail and the command
points(s100) displayed a plot with the samples locations, see Figure
3.3.

Number of data points: 100

Coordinates summary

Coord.X Coord.Y

min 0.005638006 0.01091027

max 0.983920544 0.99124979

Distance summary

min max

0.007640962 1.278175109

Data summary

Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.1680 0.2730 1.1050 0.9307 1.6100 2.8680

Other elements in the geodata object
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Figure 3.3: Samples Locations of example dataset.

[1] "cov.model" "nugget" "cov.pars" "kappa" "lambda"

At the moments at which the samples and his values are available, the
function Variogram can be built and plotted via the function variog.
This function allow choose between the classical method of moments
or modulus method suggested by Cressie and Hawkins (25). For this
example is considered classical estimator and the command execute cor-
respond to:

Vs100 <- variog(s100,option="bin",estimator.type="classical",

uvec=seq(0,1,l=11)),

where:

• s100: the empirical data set,

• estimator.type="classical": variogram function based on the
method of moments,

• uvec=seq(0,1,l=11): lags provided (represented in the distance
vector).

The resulting Variogram, Figure 3.4, can be displayed with command
plot(Vs100) and the details about the empirical Variogram function are
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show calling the function Vs100 in the R environment, see Appendix A.2,
where:

• u: distance vector,

• v: estimated value at distance u,

• n: number of pairs in each bin,

• sd: standard deviation of the value in each bin,

• bins.lim: limits defining the interval spanned by each bin,

• ind.bin: indicate if the number of pairs in each bin is greater or
equal to the value in the argument pairs.min,

• var.mark: variance of the data,

• beta.ols: mean part of the model fitted by ordinary least square,

• output.type: echoes of the option argument,

• max.dist: maximum distance between pairs allowed in the vari-
ogram calculations,

• estimator.type: echoes the type of estimator used,

• n.data: number of data,

• lambda: value of the transformation parameter,

• trend: trend specification,

• direction: direction for which the variogram was computed,

• uvec: lag provided in the function call,

• call: the function call.

Such as was mentioned earlier in Section 3.3, the empirical variogram
must be fitted to a model. The geoR package include the possibilities
of estimate the parameters of the variogram model “by eye”(function
lines.variomodel), by least squares fit (function variofit), by likeli-
hood based methods (function likfit) and bayesian methods (function
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Figure 3.4: Variogram of the example dataset.

krige.bayes). For this example a maximum likelihood method is used
executing the command:

mls100 <- likfit(s100,ini=c(1,0.5),fix.nugget=T),

where:

• s100: the empirical data set,

• ini=c(1,0.5): initial values for the covariance parameters,

• fix.nugget=T: indicate that the nugget variance must regarded
as fixed.

Although is not indicate the model of the correlation function that
is use in likfit command, an exponential model is applied by de-
fault. To use different models, exist the argument cov.model, where the
available options are: matern, exponential, gaussia, spherical,

circular, cubic, wave, power, powered.exponential, cauchy,

gencauchy, gneiting, gneiting.matern, pure.nugget.

Use command lines(mls100) for see the graphic of model variogram
just after of execute the command plot(Vs100) in order to put in the
same figure the empirical variogram and the modeled variogram. Figure
3.5 represent this situation. A summary of the parameter estimation
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Figure 3.5: Empirical and model variogram of example dataset.

for model variogram is obtained with function summary(mls100), see
Appendix A.3.

Now, the spatial interpolation process can be performed. For this,
the parameter’s values will be estimate in the four points indicated by
the fourpoints matrix. The function krige.conv is in charge of make the
estimation using by default Ordinary Kriging method, but other method
can be used such as Simple Kriging, Trend (universal) Kriging and Ex-
ternal Trend Kriging. In this example Ordinary Kriging estimation is
performed via the command kfours100 who calls to the krige.conv

function considering the original dataset, the location of points of inter-
est and the variogram model parameters. The output of the executed
command okfours100 shows the estimate value and its krige variance
in the interesting locations. Below is illustrated step by step the imple-
mentation of the estimation process.

1. Four point’s location.

> fourpoints <- matrix(c(0.2,0.6,0.2,1.1,0.2,0.3,1,1.1),

ncol=2)

>

>

>
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> fourpoints

[,1] [,2]

[1,] 0.2 0.2

[2,] 0.6 0.3

[3,] 0.2 1.0

[4,] 1.1 1.1

>

2. Calling to krige.conv function.

> okfours100 <- krige.conv(s100, locations = fourpoints,

krige = krige.control(obj.m = mls100))

krige.conv: model with constant mean

krige.conv: Kriging performed using global neighborhood

>

3. Displaying the estimated values.

> okfours100

$predict

[1] 0.8977980 1.2452301 -0.7125958 0.7732152

$krige.var

[1] 0.1979621 0.3849767 0.3509200 0.6996152

>
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Chapter 4

Literature Review

In this chapter will be described the works that involve the WSN and
spatial interpolation via the Kriging technique. The literature research
was made taking account the WSN technology and the application of
some spatial interpolation process based on Kriging technique. The re-
search was made considering the main words Kriging and Wireless Sen-
sor Networks. Moreover, the works was classify based on the following
parameters:

• Keywords: In order to emphasize the main technologies used in
the work.

• Field: In order to emphasize the areas where the works can be
apply (or were applied).

• Cited by: Show the number of citations in other works according
to Google Scholar.

• Contribution: The main and/or novel contribution that expose the
work.

• Methodology: In order to emphasize the steps taken for develop
the work.

• WSN Contribution: In order to emphasize how the WSN is involve
in the work.
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• WSN Data: In order to emphasize how the data provided by WSN
is use in the work.

• Kriging Contribution: In order to emphasize the propose of the
use of the spatial interpolation technique.

• Kriging Type: In order to emphasize the Kriging type technique.

• Variogram: In order to emphasize some comments about the esti-
mation or setting-up of the variogram.

• Comments: In order to emphasize other important issues.

Then the works and its description are displayed.

4.1 Sharing and Exploring Sensor Streams over

Geocentric Interfaces (18)

Authors Luo, Liqian and Kansal, Aman and Nath, Suman and
Zhao, Feng.

Source In Proceedings; GIS ’08: Proceedings of the 16th ACM
SIGSPATIAL international conference on Advances in
geographic information systems.

Publisher ACM.

Year 2008.

Keywords Sensor networks, peer produced, geocentric interface.

Field Systems Infrastructure, Sensor Data Stream Hetero-
geneous Sensor Networks, Sharing Approach.

Cited by 4, in Google Scholar.
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4.2 Kriging for Localized Spatial Interpolation in Sensor
Networks (35)

Contribution Presents to SenseWeb, an open and scalable infras-
tructure for sharing and spatial-temporal exploration
of sensor data stream. Its data exploration front-
end, SensorMap, presents sensor streams visually on
a map-based interface (interactive geocentric data ex-
ploration).

Methodology The proposed infrastructure it is evaluated on a de-
ployed prototype.

WSN
Contribution

One of the diverse sensor network that help to collect
data.

WSN Data Temperature, traffic, and camera sensors in Seattle,
weather stations in Le Genepi (Switzerland), weather
towers in Wannengrat (Switzerland), camera and rain
sensors in Taiwan, and weather stations in Singapore.

Kriging
Contribution

Spatial Interpolation algorithm implemented in the
data transformers, in order to build a map of the in-
teresting parameter.

Kriging
Type

Ordinary.

Variogram Undescribed.

Comments Kriging and Inverse Distance Weight are implemented
in data transformers for spatial interpolation. Both
are compared via performance evaluation. Tradeoff
between precision and latency.

4.2 Kriging for Localized Spatial Interpolation

in Sensor Networks (35)

Authors Umer, Muhammad and Kulik, Lars and Tanin, Ege-
men.
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Source In proceedings; SSDBM ’08: Proceedings of the 20th
international conference on Scientific and Statistical
Database Management.

Publisher Springer-Verlag.

Year 2008.

Keywords Systems Infrastructure, Sensor Data Stream Hetero-
geneous Sensor Networks, Sharing Approach.

Field Wireless Sensor Network, Distributed, Interpolation
Algorithm, Energy Efficiency, Coverage Hole.

Cited by 2, in Google Scholar.

Contribution Perform accurate spatial interpolation for coverage
holes with minimal power requirements. For this,
build a correlation model (via Quad Suppress Algo-
rithm QS) for perform interpolation (via Distributed
Kriging Algorithm DISK).

Methodology Design a new technique. Test the performance via
simulation. Compare the proposed technique versus
global interpolation.

WSN
Contribution

Presents an alternative to solve WSN’s coverage holes
problem.

WSN Data Two datasets; a Digital Elevation Model (DEM)
dataset from the state of Colorado US (8), and simu-
lated traffic data for the city of Melbourne, Australia.

Kriging
Contribution

Spatial Interpolation. Alternative to sensor deploy-
ment for tackle the problem of coverage holes.

Kriging
Type

Ordinary and Distributed Kriging algorithm.
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4.3 QoM and Lifetime-constrained Random Deployment of
Sensor Networks for Minimum Energy Consumption (19)

Variogram Undescribed.

Comments Variogram variation (QS) and Kriging variation
(DISK) are implemented in a distributed approach.
Thus, the communication costs are reduced. Hence, is
more energy efficient that global interpolations.

4.3 QoM and Lifetime-constrained Random De-

ployment of Sensor Networks for Minimum

Energy Consumption (19)

Authors Maleki, Morteza and Pedram, Massoud.

Source In proceedings; IPSN ’05: Proceedings of the 4th in-
ternational symposium on Information processing in
sensor networks.

Publisher IEEE Press.

Year 2005.

Keywords Energy-awareness, Sensor networks, Mathematical
programming/optimization, Random deployment.

Field Wireless Sensor Network, Optimization Problem, En-
ergy Efficiency, Minimum number of sensor, Routing
Algorithm.

Cited by 19, in Google Scholar.

Contribution State as an Optimization Problem the energy efficient
random deployment of sensor network.
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Methodology A node density is set which satisfies the Quality of
Monitoring QoM constraint. Then, presents a con-
tinuous space model for random deployment with the
associated routing scheme; Finally give a Spatial dis-
tribution of sensor with minimum total energy. All
this process is tested via simulation.

WSN
Contribution

The paper consider the problem of energy efficient ran-
dom deployment of WSN.

WSN Data The energy used by sensors to transmit the data is
used for establish the continuous space model (objec-
tive function).

Kriging
Contribution

Help to define the metric QoM (Quality of Monitoring)
that is used for establish one of the constraint of the
optimization problem.

Kriging
Type

Ordinary.

Variogram Undescribed.

Comments In order to state the Quality and Lifetime-constrained
Sensor Deployment ProblemQLSD key assumptions
are set: deployment region is circular, sensors nodes
generate traffic at a constant data rate, no energy loss
due to the MAC layer collision, the sensor nodes are
time-synchronized, sensor can find their location af-
ter they are deployed, lossless wireless communication
between sensors.

4.4 Asymptotic optimality of multicenter Voronoi

configurations for random field estimation

(9)

Authors Graham, R. and Cortes, J.
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4.4 Asymptotic optimality of multicenter Voronoi
configurations for random field estimation (9)

Source Article; Automatic Control, IEEE Transactions on.

Publisher IEEE Control Systems Society.

Year 2007.

Keywords Optimal Estimation, Kriging Interpolation, Optimal
Field Interpolation, Prediction Error.

Field Wireless Sensor Network, Optimization Problem,
Field Interpolation.

Cited by 9, in Google Scholar.

Contribution Characterize the mean-squared error of the simple
Kriging estimator as a function of the network con-
figuration. Next, define two optimal criterion: the
maximum predictor error and generalized variance of
the Kriging predictor.

Methodology State an Optimization Problem in order to Charac-
terize the optimal configuration for spatial prediction
via propositions, proofs, theorems and corollaries. A
simulation is performed too.

WSN
Contribution

WSN, optimal sensor locations that give rise optimal
field interpolation.

WSN Data Simulations with 5 agents inside a convex polygon.

Kriging
Contribution

Characterize the continuity properties of the mean-
squared error of the simple Kriging estimator as a
function of the network configuration.

Kriging
Type

Simple.

Variogram Undescribed.
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Comments Focus on optimal network configuration for the esti-
mation of the random field at a single snapshot. In
other words, select locations to take measurements in
a such way as minimize the uncertainty in the estimate
of the spatial process.

4.5 Energy-Efficient Map Interpolation for Sen-

sor Fields Using Kriging (11)

Authors Harrington, Brian and Huang, Yan and Yang, Jue and
Li, Xinrong.

Source Article; IEEE Transactions on Mobile Computing.

Publisher IEEE Educational Activities Department.

Year 2009

Keywords Spatial autocorrelation, geosensor networks, sensor
networks, energy efficient.

Field Wireless Sensor Network, Spatial/Temporal Interpo-
lation, Energy Efficiency, Sensor Network Database.

Cited by 1, in Google Scholar.

Contribution Spatial-Autocorrelation aware, energy-efficient and er-
ror bounded framework. Novel Iterative reporting
framework, resilient to sensor failures and capable of
integration with temporal models.

Methodology Propose the framework with Kriging as the spatial in-
terpolation method and compare with other interpo-
lation schemes. Experimental evaluation (simulation
and real sensor network) of framework; its compared
with other techniques.
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4.6 From wireless sensors to field mapping: Anatomy of an
application for precision agriculture (5)

WSN
Contribution

One type of sensor network for apply the proposed
framework. Furthermore, the experimental evaluation
was done on a Micaz mote sensor network.

WSN Data For evaluation via simulation: Data from Intel lab
data set (54 sensors) and from Global Historical Cli-
matology Network (Asia portion). For evaluation via
real network: 25 MICAz motes in 5x5 grid with a
length of 4 ft. from one mote to another.

Kriging
Contribution

Is the technique used for build the interpolation map
of the phenomena. Is performed in the sink.

Kriging
Type

Ordinary.

Variogram Estimated at the sink and propagated to the sensors.

Comments Three main conflicted goals: minimum number of re-
porting sensor, minimum coordination costs among
sensor, interpolation at sink within an error thresh-
old.

4.6 From wireless sensors to field mapping: Anatomy

of an application for precision agriculture

(5)

Authors Alberto Camilli and Carlos E. Cugnasca and Anto-
nio M. Saraiva and Andr R. Hirakawa and Pedro L.P.
Corra.

Source Article; Computers and Electronics in Agriculture.

Publisher Elsevier.

Year 2007.
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Keywords Wireless sensor networks; Precision agriculture; Indi-
cator Kriging.

Field Precision Agriculture, Wireless Sensor Network, Sim-
ulated Application.

Cited by 15, in Google Scholar.

Contribution Presents a proof of concepts on how networked sensors
can be utilized to construct an on-the-go field data
estimate for use in presicion agriculture.

Methodology An hypotheses is set. Then, the application is simu-
lated in “network simulator ns-2”. The precision and
computational complexity are evaluated considering
different configurations and interpolations methods.

WSN
Contribution

Is an alternative way to collect field data periodically
without the use of vehicle to get sampling point. The
data reported by WSN is useful for build estimate
field.

WSN Data WSN is simulated. The dataset used in simulation
come from literature. Sensor devices were deployed in
a 25m grid and the referential data set used as the
sensor values at grid positions.

Kriging
Contribution

Used for spatial interpolation based on indicator val-
ues reported by the sensors.

Kriging
Type

Ordinary / Indicator.

Variogram Undescribed.
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4.7 Location-aware system for olive fruit fly spray control (27)

Comments Three different configurations. First, all nodes answer
the query from the sink and send their nominal values.
Second, all nodes answer the query from the sink and
send their indicator values. At the end, sensor’s indi-
cators data that are inside a predefined region around
the location to be estimated are sent to the sink.

4.7 Location-aware system for olive fruit fly spray

control (27)

Authors Costas M. Pontikakos and Theodore A. Tsiligiridis and
Maria E. Drougka.

Source Article, Computers and Electronics in Agriculture.

Publisher Elsevier.

Year 2009.

Keywords Location-aware system, Expert system, Geographical
Information System, Precision Farming, Olive fruit fly.

Field Precision Agriculture, Wireless Sensor Network,
Location-Aware System.

Cited by 0, in Google Scholar.

Contribution This article proposes a Location-Aware (LA) system
suitable for the ground control of the olive fruit fly
combining sensor technologies, wireless Internet, geo-
graphical information systems (GIS) and expert sys-
tems (ES).

Methodology A system is built in a layered or modular way. The sys-
tem architecture is based on 4 modules: Communica-
tion module, LA module, GIS module and ES module.
Finally, the system is test on a small-scale experiment.
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4. LITERATURE REVIEW

WSN
Contribution

The WSN is useful for handling heterogeneous envi-
ronmental data in a single interface (26).

WSN Data WSN architecture to transmit the data from an array
of sensors to the server over a wireless link is the archi-
tecture provided in Pontikakos and Tsiligiridis (26).

Kriging
Contribution

Estimate the infestation risk, over experimental area,
based on data provided by the heterogeneous sensor
network.

Kriging
Type

Undescribed.

Variogram Undescribed.

Comments The data used for estimate of the infestation risk come
from heterogeneous sensor which can be managed in a
simple user interface. The idea is hide the complexity
of the sensor network and the communication archi-
tecture aspects to the user.

4.8 The Minimum Number of Sensors Inter-

polation of Spatial Temperature Profiles in

Chilled Transports (14)

Authors Jedermann, Reiner and Lang, Walter.

Source In proceedings, EWSN ’09: Proceedings of the 6th
European Conference on Wireless Sensor Networks.

Publisher Springer-Verlag.

Year 2009.

Keywords Wireless sensor networks, Food logistics, Kriging, In-
formation, Processing, Temperature mapping.
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4.8 The Minimum Number of Sensors Interpolation of
Spatial Temperature Profiles in Chilled Transports (14)

Field Wireless Sensor Network, Spatial Temperature Profile
(Map), Sensor Positioning Strategies, Minimum num-
ber of sensor, Cool chains, Chilled Transport.

Cited by 0, in Google Scholar.

Contribution Method to estimate the minimum number of sensors
and to compare different sensor positioning strategies.

Methodology Experiment on a set of data provided by a WSN.
Compare different interpolation methods and evaluate
strategies for locations of sensors. Use the interpola-
tion error as an indicator of the probability of sensor
fault.

WSN
Contribution

Technology used in order to get the samples of tem-
perature in chilled transport. Collect the experimental
data for this study from a delivery truck.

WSN Data Data set split in two groups: one group is used like
input in the interpolation model and other group is
used like references points. TelosB motes were used for
data acquisition. The preliminary tests was performed
with data loggers.

Kriging
Contribution

Used for build interpolation map. Furthermore, the
average prediction error of the ordinary kriging is plot-
ted as a function of the number of source (sensor)
point, i.e, can help to choose the minimum number
of sensors in order to obtain an acceptable error in
the estimation process.

Kriging
Type

Ordinary Kriging and Kriging with linear trend.

Variogram Use Gaussian Model.

Comments The interpolation process was simulated in Matlab.
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4. LITERATURE REVIEW

4.9 A method for spatial prediction of daily soil

water status for precise irrigation schedul-

ing (13)

Authors C.B. Hedley and I.J. Yule.

Source Article, Agricultural Water Management.

Publisher Elsevier.

Year 2009.

Keywords EM mapping, Soil moisture sensor network, Irrigation
scheduling, Soil water status.

Field Irrigation System, Water Efficiency, Soil Moisture
Sensor Network, Soil water status.

Cited by 0, in Google Scholar.

Contribution A method for predicting daily soil water status is pro-
posed. This prediction is used for improved the ir-
rigation system via an software-controlled automated
irrigation system. Then, is possible to reach a water
efficiency usage.

Methodology Experimental. The proposed method is applied over
maize field.

WSN
Contribution

In this work is not used a WSN network to get the
input data from the field, but is mentioned like an
alternative to get the samples data.

WSN Data The best option to get the samples data.

Kriging
Contribution

Used to produce a soil EC(Electrical Conductivity)
prediction surface map.
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4.10 Remote Sensing and Control of an Irrigation System
Using a Distributed Wireless Sensor Network (15)

Kriging
Type

Ordinary.

Variogram Spherical model.

Comments In order to get a more accurate interpolation of the
soil water is need get a greater number of samples. In
this scenario, the use of a WSN for get the samples is
the best option as such as is shows in the irrigation
system proposed in (15).

4.10 Remote Sensing and Control of an Irriga-

tion System Using a Distributed Wireless

Sensor Network (15)

Authors Yunseop Kim and Evans, R.G. and Iversen, W.M.

Source Article, Instrumentation and Measurement, IEEE
Transactions on.

Publisher IEEE Instrumentation and Measurement Society.

Year 2008.

Keywords Automation, control systems, measurement, portable
radio communication, sensors, water resources.

Field Irrigation System, Water Efficiency, Automation,
Control System, Wireless Sensor Network.

Cited by 12, in Google Scholar.
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4. LITERATURE REVIEW

Contribution In traditional irrigation systems the water is applied
in a uniformly way across the field. In this works is
proposed an alternative to traditional irrigation sys-
tem using in-field WSN in order to take samples of
soil properties and water availability with the aim to
decide if is proper the irrigation or not.

Methodology Experimental. The proposed system is applied on a
small field.

WSN
Contribution

A number of in-field sensing station are used for take
samples of soil properties. The architecture of the
sensing stations is deployment based on wireless link
and bluetooth standard.

WSN Data The data is provided by five in-field sensing stations.
Each station is composed by data logging, power
management system and wireless communication with
bluetooth standard.

Kriging
Contribution

Kriging is used for create (via estimation process) a
spatial map of soil EC variation based on data pro-
vided by the in-field station.

Kriging
Type

Undescribed.

Variogram Undescribed.

Comments The WSN architecture is deployment based on blue-
tooth standard. This architecture can be replace with
Motes sensor nodes in order to improve the coverage
area in a more efficient way saving time and energy
resources. Moreover, with more samples locations will
be possible create a more accurate spatial map of soil
EC variations.
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4.11 A real-time sensor network visualization system using
KVS - Kyoto Visualization System (30)

4.11 A real-time sensor network visualization

system using KVS - Kyoto Visualization

System (30)

Authors Segawa, Norihisa and Yasuhara, Yukio and Sakamoto,
Naohisa and Yoshihisa, Tomoki and Ebara, Yasuo and
Koyamada, Koj.

Source In proceedings, SenSys ’07: Proceedings of the 5th in-
ternational conference on Embedded networked sensor
systems.

Publisher ACM.

Year 2007.

Keywords Visualization, isosurface, interpolation, Kriging
method.

Field Wireless Sensor Network, Real-Time Visualization,
Interpolation, Isosurface.

Cited by 0, in Google Scholar.

Contribution In this work is development a system that collects in-
formation from sensor nodes and is capable interpolate
information on at any positions of space. Moreover,
the data are visualize on real time by three dimensions
on a computer.

Methodology Experimental. The proposed systems is deployment
in the Kyoto University Koyamada laboratory.

WSN
Contribution

Used for the sensor information collection part. Mica2
and Micaz sensor are used for collect data.
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4. LITERATURE REVIEW

WSN Data This system works with mica (mica2 or micaZ) sen-
sor nodes and an xserve data collection system of
Crossbow. The system performs communication with
xserve system by a socket, and collects sensor infor-
mation by real-time.

Kriging
Contribution

Used to interpolate data to continuous space.

Kriging
Type

Undescribed.

Variogram Undescribed.

Comments It will be interesting see the application of this sys-
tem in a more dense sensor nodes deployment area
and analize what happen when a discontinuity over
the space is introduced (e.g. a wall or other obstacle
between sensor nodes).

4.12 Interpolation for Wireless Sensor Network

Coverage (34)

Authors Tynan, R. and O’Hare, G. M. P. and Marsh, D. and
O’Kane, D.

Source In proceedings, EmNets ’05: Proceedings of the 2nd
IEEE workshop on Embedded Networked Sensors.

Publisher IEEE Computer Society.

Year 2005.

Keywords Interpolation, Wireless Sensor Network Coverage, En-
ergy Efficiency, Weighted Average Algorithm.

Field Wireless Sensor Network, Coverage Problem, Node
Scheduling, Energy Efficiency.
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4.12 Interpolation for Wireless Sensor Network Coverage (34)

Cited by 13, in Google Scholar.

Contribution In this work is proposed a technique based on interpo-
lation with the aim to help to solve two common WSN
problems: Network coverage and Node scheduling.

Methodology Experimental. The proposed technique is applied on
a real WSN.

WSN
Contribution

The proposed method try to solve the WSN problems
of network coverage and node scheduling in an energy
efficient way.

WSN Data Use 16 mica2 motes arranged in a regular 4x4 grid with
a 4 inch vertical and horizontal separation between
each node, and each node sampled its temperature
sensor every minute.

Kriging
Contribution

In the proposed technique, Kriging is not the interpo-
lation method.

Kriging
Type

Unsdescribed.

Variogram Undescribed.

Comments In this work is used Weighted Average Algorithm like
interpolation method. However, another interpolation
method may be used, e.g. Kriging.
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Chapter 5

Comments about Kriging

“It is unwise to throw one’s data into the first available interpolation
technique without carefully considering how the results will be affected
by the assumptions inherent in the method. A good GIS (Geographic
Information System) should include a range of interpolation techniques
that allow the user to choose the most appropriate method for the job at
hand.” (4)

Kriging is a stochastic spatial interpolation process. It is a well
known and robust methodology broadly studied. Furthermore, has some
advantages like: The variogram reflect the spatial correlation structure
of the data and allow the compute of the weights in function of the
empirical data; The estimators are unbiased, with minimum variance
and accompanied by a measure of the error and associated confidence
in each predicted value.

Despite Kriging’s advantage some drawbacks can be mentioned. For
example, if Kriging is compared with the deterministic spatial interpo-
lation method: Inverse Distance Weighting IDW. These disadvantages
include; Kriging techniques are more complex, demand several compu-
tational resources and require a careful selection of the variogram model.
Furthermore, its structural analysis (variogram) can be a subjective pro-
cess.

For further information, below are presented a very brief review of
some works involving different spatial interpolation methods.
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5. COMMENTS ABOUT KRIGING

In (12) a novel alternative is proposed in order to improve the com-
putation time requirements and memory resources for data sets from
Kriging Systems with many observations using a Gaussian Markov ran-
dom field on a lattice as an approximation of a Gaussian field.

In (17) is proposed an adaptive inverse-distance weighting method
that take advantage of the computational simplicity of inverse distance
weighting, but provide the additional flexibility to accommodate vari-
ability in the distance-decay relationship over the study area. This novel
method is compared with ordinary Kriging.

In (33) a spatial evaluation of Mn from soils in citrus-growing ar-
eas was done through three estimation methods: Kriging, neural-fuzzy
modeling and fuzzy interval arithmetic. The results show that the neuro-
fuzzy hybrid method has produced more accurate outputs than Kriging.

The work in (6) describe the implementation and architecture of a
Java-based intelligent advisor to assist a generic user, ranging from the
casual to the specialist, in selecting the interpolation technique most
appropriate for a given task and data set. The interpolation meth-
ods currently assessed by the system are multiple forms of Kriging,
thin plate smoothing splines, inverse-distance weighting and trend sur-
face/polynomial analysis.

In (10) data recovery and reconstruction methods for unsteady flow
fields with spatio-temporal missing data are studied based on proper
orthogonal decomposition (POD) and on Kriging interpolation. It is
found that for sufficient temporal resolution, POD-based methods out-
perform Kriging interpolation. However, for insufficient temporal reso-
lution, large spatial gappiness or for flow fields with black zones, Kriging
interpolation is more effective. The results show that Kriging interpo-
lation is an effective way of recovering missing data in unsteady flows
even in sensitive regions, e.g., regions of absolute instability. For high
temporal resolution (i.e., many snapshots), POD-based reconstruction
is more accurate tan Kriging interpolation; however, for low temporal
resolution Kriging is more effective. For small gappiness in the flow field,
POD-based reconstruction is more accurate than Kriging; however, for
large gappiness Kriging is more accurate.

In (3) is intends to show how the proper adjustment of variogram and
Kriging parameters can be set to achieve quality results on resampling
SRTM data (Shuttle Radar Topography Mission data) from 3” to 1”
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resolution. Examples are presented for a test area in western USA and
include different adjustment schemes and comparisons with the original
1”, with the national elevation dataset (NED), digital elevation model
(DEM), and with other interpolation methods such as splines and in-
verse distance weighted. The results show that although the 1” surfaces
resampled by Kriging and splines are very similar, the Kriging results
are superior, since the spline-interpolated surface still presented some
noise and linear artifacts, which were removed by Kriging.

In (36) a new method for studying spatial patterns is introduced, the
two-dimensional net-function interpolation. The method can be used
to interpolate unmeasured sample locations based on known values at
nearby grid points. Specific examples from ecological studies in the In-
ner Mongolia Grassland, China are discussed to illustrate the use of the
method. A brief comparison between the net-function interpolation and
Kriging is also made. The results show that the net-function method,
versus Kriging, appears to be undesirable for irregularly-gridded data.
When anisotropy is taken into account with the universal Kriging al-
gorithm, Kriging may become rather complex and computationally de-
manding.

The objectives of the study in (32) is to select an optimal interpola-
tion method in the Minqin oasis (northwest China) region from among
Kriging methods (including Ordinary Kriging, Simple Kriging, and Uni-
versal Kriging), the inverse distance weighting method, and the radial
basis function method. These methods was compared via the interpo-
lation accuracy of depth to groundwater and its estimation errors. The
results show that Simple Kriging is the optimal method for interpolat-
ing depth to groundwater in this region (in terms of root mean squared
errors and correlation coefficients between interpolated values and ob-
served values).
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Chapter 6

Final Remarks

The WSN are a new technology with a huge number of potential
applications. The implementation of a WSN must tackle new challenges,
problems and constraints such as the limited energy resources, limited
process capabilities, topology changes, discrete data samples in time
and/or space, among other problems.

In the other hand, Kriging technique is a spatial interpolation tech-
nique from the mining world that to extended its applications field to
other earth sciences.

The application of Kriging technique in WSN problems and the way
at which the Kriging technique and WSN are related in specific task sys-
tems was developed in this report through a literature research process.
From the analyses over the selected works it can say that some works
deal with specific WSN problems, mainly with energy efficiency issues,
coverage holes, spatial localizations of the nodes, minimum number of
sensors and sensor scheduling. Some of these problems are treated like
optimization problems. In other works the Kriging predictions helps to
create spatial interpolation maps that are useful to evaluated the spatial
variation of a parameter under study. These maps have applications in
different systems, e.g., precision agriculture systems.

Kriging was chosen like the interpolation technique for this survey
because is a robust and well known interpolation technique that is based
on the spatial correlation of the sample locations. Hence, it is capable
to reach an acceptable estimation values with a measure of the estima-
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6. FINAL REMARKS

tion error. Some detractors affirm that Kriging is slow in delivering its
results and needs too many calculation resources compared to other in-
terpolation techniques. In case you would not trust the results obtained
through Kriging, it remains always possible to use some other method of
interpolation. If so, the results can then be compared through the error
measurement of the predictions and the best method can be chosen for
each particular application.

Future researches may extend this work considering how, for exam-
ple, the higher density of sensors in an area can improve the accuracy
of the Kriging predictions. Another option is to extend the predictions
to time domain and estimate values between successive samples. Never-
theless, Kriging is not the only interpolation technique and other inter-
polation methods applied to WSN can be analyzed in future researches.
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Appendix A

Example Details

A.1 s100: Dataset

$coords

[,1] [,2] [,1] [,2]

[1,] 0.807126710 0.94544601 [2,] 0.549998072 0.68326492

[3,] 0.340805545 0.45850888 [4,] 0.137099310 0.47200832

[5,] 0.044185692 0.12232017 [6,] 0.027816360 0.80374588

[7,] 0.724385299 0.62332495 [8,] 0.246973875 0.14205770

[9,] 0.522983879 0.76201844 [10,] 0.249600428 0.58405976

[11,] 0.028991738 0.95606156 [12,] 0.143142421 0.95199657

[13,] 0.086238803 0.14106986 [14,] 0.983920544 0.71920011

[15,] 0.079471597 0.58686494 [16,] 0.478065402 0.43981990

[17,] 0.631426017 0.89451549 [18,] 0.820550200 0.48675112

[19,] 0.934560909 0.90151412 [20,] 0.094132199 0.55364481

[21,] 0.585577094 0.69763691 [22,] 0.642417917 0.76206592

[23,] 0.507945677 0.88213743 [24,] 0.363397676 0.62456433

[25,] 0.513764089 0.06826610 [26,] 0.263806508 0.35663249

[27,] 0.864579863 0.26637957 [28,] 0.005638006 0.76928547

[29,] 0.907257782 0.13576162 [30,] 0.177797950 0.05321294

[31,] 0.330195867 0.20887775 [32,] 0.094165342 0.77715519
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A. EXAMPLE DETAILS

[33,] 0.257783640 0.55595250 [34,] 0.226869478 0.59507909

[35,] 0.846112244 0.73963968 [36,] 0.404958459 0.05382997

[37,] 0.707190327 0.52866792 [38,] 0.732988894 0.60828701

[39,] 0.293062207 0.94696340 [40,] 0.192971485 0.07482082

[41,] 0.849779000 0.37836289 [42,] 0.457026324 0.35670797

[43,] 0.691539921 0.41060066 [44,] 0.475881600 0.68247605

[45,] 0.265413690 0.03265305 [46,] 0.679222414 0.43100733

[47,] 0.306418876 0.84172254 [48,] 0.108589044 0.72541736

[49,] 0.464779988 0.74625289 [50,] 0.968033380 0.94756137

[51,] 0.061719681 0.57977207 [52,] 0.306426739 0.90216261

[53,] 0.947014188 0.95192688 [54,] 0.430859474 0.96433238

[55,] 0.931844109 0.65749259 [56,] 0.689199685 0.15415125

[57,] 0.634984260 0.64798717 [58,] 0.485696871 0.40060389

[59,] 0.163376110 0.24714981 [60,] 0.887798236 0.38501224

[61,] 0.006870312 0.11247721 [62,] 0.447166599 0.62429936

[63,] 0.506515568 0.41561616 [64,] 0.967556274 0.58564516

[65,] 0.747906145 0.52078144 [66,] 0.503182120 0.45504266

[67,] 0.077190299 0.92241133 [68,] 0.588881995 0.83999337

[69,] 0.108194098 0.76308847 [70,] 0.886685456 0.83523563

[71,] 0.647070315 0.14569712 [72,] 0.290393424 0.60043479

[73,] 0.658765058 0.52603477 [74,] 0.748581991 0.26287565

[75,] 0.604099556 0.79045207 [76,] 0.851071746 0.76730799

[77,] 0.298447147 0.16615725 [78,] 0.020767781 0.98308196

[79,] 0.940281073 0.77707861 [80,] 0.586882023 0.70516562

[81,] 0.850595354 0.01091027 [82,] 0.381382126 0.99124979

[83,] 0.577533818 0.17780001 [84,] 0.158356967 0.20805035

[85,] 0.491523982 0.37358486 [86,] 0.733346733 0.38444906

[87,] 0.536329847 0.76250096 [88,] 0.900223871 0.82685943

[89,] 0.186263138 0.71121034 [90,] 0.904586329 0.95129012

[91,] 0.664045752 0.98082406 [92,] 0.085919891 0.68740117

[93,] 0.455045202 0.21624276 [94,] 0.890554640 0.94962814

[95,] 0.184807496 0.25771587 [96,] 0.585834014 0.44893034

[97,] 0.541334383 0.13499379 [98,] 0.406253994 0.96311050
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A.1 s100: Dataset

[99,] 0.495317768 0.17356993[100,] 0.385663031 0.52014266

$data

[1] 0.917188752 1.148323354 1.032756300 0.121954767

0.615298778 -0.550606543 1.703814887 1.747901020

2.100869073 0.441224609 -0.009536357 -0.801448333

-0.001930896 1.141943813 0.538675515 0.561124760

1.084342606 1.494224867 1.451773709 -0.756622437

[21] 1.742536841 1.972069943 0.869030503 -0.220931922

1.311725186 1.561038129 1.843500850 0.333177663

1.223030476 0.545023824 1.582932912 -0.814958051

0.054556702 0.405697418 1.422665584 1.765298993

1.185470638 1.754435368 -1.150624846 1.553357086

[41] 1.164951011 0.259479909 1.577426439 0.837983077

1.643087465 1.717231426 0.993917554 0.128603062

0.805666518 0.765777025 0.103290499 -1.167695474

0.719148783 0.359709271 1.778422657 2.079565424

2.867896903 0.560021276 0.277490957 1.792041134

[61] 0.200109632 0.237756326 1.308548621 1.944901149

0.402131870 0.979640487 -0.238509435 2.156120583

-0.610998066 1.546203174 1.496030375 0.353898003

1.968717419 2.171577664 1.965981722 1.620228489

1.637205070 0.061662135 1.810161014 1.726308891

[81] 0.060908554 -0.729824032 1.210333642 0.643947930

-0.066323182 1.162695117 2.443485524 1.845180798

1.124844572 1.380025167 1.399538798 1.311149175

1.606818085 1.429380087 0.134733580 1.284822319

0.757246091 0.186184896 0.891084676 0.073563986

$cov.model

[1] "exponential"

$nugget
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A. EXAMPLE DETAILS

[1] 0

$cov.pars

[1] 1.0 0.3

$kappa

[1] 0.5

$lambda

[1] 1

attr(,"class")

[1] "geodata"

A.2 Empirical Variogram

> Vs100

$u

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

$v

[1] 0.1730722 0.3376539 0.4521105 0.6099240 0.6075521 0.7320905

0.9025480 0.8169235 1.0704021

[10] 1.0596945 0.8401933

$n

[1] 45 250 446 640 684 717 655 517 449 323 139

$sd

[1] 0.2230052 0.4518735 0.5850419 0.9622870 0.8918297 1.0145878

1.0862696 0.9818199 1.1453274

[10] 1.0852590 0.8785460
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A.2 Empirical Variogram

$bins.lim

[1] 1.00e-12 5.00e-02 1.50e-01 2.50e-01 3.50e-01 4.50e-01 5.50e-01

6.50e-01 7.50e-01 8.50e-01

[11] 9.50e-01 1.05e+00

$ind.bin

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

$var.mark

[1] 0.7322958

$beta.ols

[1] 0.930718

$output.type

[1] "bin"

$max.dist

[1] 1.05

$estimator.type

[1] "classical"

$n.data

[1] 100

$lambda

[1] 1

$trend

[1] "cte"
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A. EXAMPLE DETAILS

$pairs.min

[1] 2

$nugget.tolerance

[1] 1e-12

$direction

[1] "omnidirectional"

$tolerance

[1] "none"

$uvec

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

$call

variog(geodata = s100, uvec = seq(0, 1, l = 11), option = "bin",

estimator.type = "classical")

attr(,"class")

[1] "variogram"

A.3 Model Variogram, Parameters Estimation

Summary

> summary(mls100)

Summary of the parameter estimation

-----------------------------------

Estimation method: maximum likelihood

Parameters of the mean component (trend):

beta
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A.3 Model Variogram, Parameters Estimation Summary

0.7766

Parameters of the spatial component:

correlation function: exponential

(estimated) variance parameter sigmasq (partial sill) = 0.7516

(estimated) cor. fct. parameter phi (range parameter) = 0.1827

anisotropy parameters:

(fixed) anisotropy angle = 0 ( 0 degrees )

(fixed) anisotropy ratio = 1

Parameter of the error component:

(fixed) nugget = 0

Transformation parameter:

(fixed) Box-Cox parameter = 1 (no transformation)

Practical Range with cor=0.05 for asymptotic range: 0.5473499

Maximised Likelihood:

log.L n.params AIC BIC

"-83.57" "3" "173.1" "181.0"

non spatial model:

log.L n.params AIC BIC

"-125.8" "2" "255.6" "260.8"

Call:

likfit(geodata = s100, ini.cov.pars = c(1, 0.5), fix.nugget = T)
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