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TEMA 5. OSCILACIONES EN CIRCUITOS LRC. 
 

1. Introducción. 
 

 En los circuitos eléctricos, las resistencias son causa de pérdida de 
energía, y los condensadores son los almacenes de la energía del campo 
eléctrico. En efecto, ya se ha visto que la energía que se almacena entre las 
placas de un condensador plano se puede interpretar como la energía 
necesaria para la creación del campo eléctrico entre sus placas, e incluso se 
ha definido una densidad de energía en las regiones en las que hay campo 
eléctrico, que es proporcional1 al cuadrado de dicho campo E.  
 

También se puede almacenar la energía en un campo magnético. Esta 
tarea la realizan las inducciones. Las inducciones solamente actúan sobre el 
circuito cuando existen corrientes variables con el tiempo, y además su 
actuación es inercial, oponiéndose siempre a las variaciones de corriente. 

 

Los circuitos eléctricos, con resistencias, condensadores e 
inducciones, son matemáticamente y en consecuencia en su 
comportamiento, semejantes a los osciladores mecánicos amortiguados, en 
los que la resistencia es el elemento disipativo y hace el papel de fuerza de 
fricción.  
 

2. Circuitos RC. 
 

 Se denomina circuitos RC a aquellos en los que intervienen una 
resistencia R y un condensador de capacidad C. En estos circuitos la 
corriente no es estacionaria, sino que varía con el tiempo. Así ocurre 
cuando estando cargado inicialmente el condensador de la figura 26.37 se 
cierra el interruptor. Un ejemplo es el circuito de descarga del flash en la 
máquina fotográfica. 
 

Descarga de un condensador. 
 

 En la figura 26.37 se observa un condensador con una carga inicial 
±Q0 sobre cada placa, conectado a una resistencia R y a un interruptor S. 
Para corrientes estables (constantes) el condensador actúa como un 
interruptor abierto. Con el circuito abierto, la diferencia de potencial entre 
los bornes es V0=Q0/C, donde C es la capacidad del condensador. 
 

 En el instante que cerramos el circuito, la corriente que lo atraviesa 
será:  
                                                 
1 Ver Tipler, cuarta edición Tema 25. Expresiones 25.13 y 25.26.  Ver Fishbane Tema 26, Expresión 
26.12, etc. 
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 A medida que transcurre el tiempo, la carga del condensador irá 
disminuyendo, por lo que la intensidad y la diferencia de potencial que 
genera serán función del tiempo. La intensidad, por definición, es2:  
 

dt

dQ
-=I  

 

 

Si aplicamos la primera ley de Kirchoff en el sentido de la corriente, 
tenemos: 
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donde B es una constante de integración, que en el instante t=0 
(condiciones iniciales) vale Q0. Así: 
 

τ− = -t/
0

t/RC
0 eQeQ=Q(t)  

 

donde τ representa la constante temporal3 del circuito RC, que representa 
el tiempo que debe transcurrir para que la carga del condensador haya 
disminuido en 1/e su valor inicial. La constante τ, que caracteriza el flujo 
de la carga a través del condensador, queda definida: 
 

RC=τ  
 

 La carga en el condensador disminuye exponencialmente con el 
tiempo, como se ve en la figura 26.38. La constante temporal τ tiene 
además el significado del tiempo en el que el condensador se habría 
descargado totalmente, si el ritmo de disminución fuera constante e igual al 
inicial. La intensidad de la corriente y la diferencia de potencial del 
condensador también decrecen a ritmo exponencial, como se demuestra: 
                                                 
2 El signo menos procede de que la carga disminuye en el condensador. 
3 Justifique por qué y deduzca que la constante temporal τ tiene dimensiones de tiempo. 

  
Figura 26.37. Circuito de descarga de un condensador de láminas planas. 
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Carga de un condensador. 
 

 La figura 26.40 muestra el circuito utilizado para cargar un 
condensador, inicialmente descargado. Cuando cerramos el circuito, 
comienza a fluir carga que va almacenándose sobre las placas, hasta que el 
voltaje del condensador iguala al de la FEM, con signo contrario. 
Aplicando la primera regla de Kirchoff: 

 

C

Q

dt

dQ
R=0

C

Q
-IR- +ξ→=ξ  

ya que en este caso la intensidad I=+dQ/dt. Multiplicando por C y 
reordenando: 
 

( ) A ln
RC

t
Q-Cln

RC

dt

Q-C

dQ +=ξ−→=
ξ

 

 

Tomando antilogaritmos y aplicando las condiciones iniciales, deducimos: 
 

( ) ( )τ=ξ -t/
f

-t/RC e-1Qe-1C=Q  
 

donde hemos aplicado que la carga final del condensador vale Qf=Cξ 
 

 
 
 
Figura 26.38 Descarga de un condensador. 
 

 

  
Figura 26.40 Circuito de carga de un condensador. 
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 Como antes, la intensidad I decrece al ritmo determinado por la 
constante temporal τ=RC del circuito (el mismo que antes): 
 

τ-t/
0eI=I  

 
Ejercicio: Calculad la función V(t) entre las placas del condensador. 
 

 En las figures 26.41 y 26.42 se representa la carga e intensidad en 
función del tiempo en este caso. 
 

  
Figura 26.41 Carga de un condensador en 
función del tiempo. 

Figura 26.42 Intensidad de carga de un 
condensador. 

 

 Una vez el condensador se ha cargado completamente se comporta 
como un circuito abierto, no dejando pasar más corriente.  
 

Ejercicio: Demostrar que la constante temporal τ=RC tiene dimensiones de tiempo. 
 

2.1 Energía en un circuito RC. 
 

 Queremos analizar el proceso de carga del condensador, desde el 
punto de vista de la energía: la energía es suministrada por la FEM. Una 
parte de ésta se usa obviamente en cargar el condensador, y la otra parte se 
disipa en la resistencia. Durante todo el proceso de carga el valor ξ  de la 
FEM permanece constante, mientras que la ddp entre las placas del 
condensador va aumentando desde 0 al valor final Vf= ξ . 
 

( ) 2
batbat CWdVCdqdW ξ=→ξ=ξ=    Energía suministrada. 

 

La energía almacenada en el condensador, toma el valor:  
 

2
concon C

2

1
W)dVC(VdqVdW ξ=→==   Energía Condensador 

 

Falta por controlar la mitad de la energía, que necesariamente se 
debe haber disipado en la resistencia por el efecto Joule. Así: 

∫ ∫
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 Independientemente del valor nominal de la resistencia R, la FEM ξ  
y la capacidad C, la mitad de la energía queda almacenada en el 
condensador y la otra mitad disipada en la resistencia R.  
 
Ejercicios de aplicación.  

3. Inductancia. 
 

 Cuando sobre un circuito existe una corriente eléctrica variable, este 
produce un campo magnético que también varía. Aplicando la ley de 
Faraday, se introducirá una FEM adicional en el circuito, que se opone a la 
variación de corriente en el circuito (signo menos en la ley de Lenz)4.  
 

Así, al conectar un circuito con una FEM, ésta genera una corriente 
transitoria que va aumentando con el tiempo hasta alcanzar su valor estable 
o final. En consecuencia, el campo magnético generado por el circuito va 
incrementándose, al aumentar la intensidad de la corriente que lo recorre, e 
igualmente el flujo magnético que atraviesa el circuito también aumenta. 
La ley de Faraday-Lenz nos afirma que aparece una FEM inducida en el 
circuito que se opone a cualquier cambio (incremento o disminución) del 
flujo magnético en el circuito. dt/d mΦ−=ξ  
 

Conclusión: Las corrientes variables en los circuitos originan efectos de 
inducción que tratan de reducir la rapidez con la que varían las corrientes.  

 

El flujo magnético que atraviesa un circuito depende de la corriente 
existente en el mismo, de las corrientes presentes en los circuitos vecinos 
(en ausencia de imanes permanentes), lo que origina dos coeficientes 
denominados de autoinducción y de inductancia mutua.  

 

Coeficiente de autoinducción. Consideremos una espira (aislada) por la que 
circula una corriente I. Como el campo magnético que genera es 
proporcional a I en todo punto del espacio, el flujo magnético que atraviesa 
la espira por la existencia de la corriente es proporcional a la intensidad I.  
 

dt

dI
L

dt

d
LI= m

indm −=
Φ

−=ξ→Φ     FEM inducida. 

Donde L es una constante que recibe el nombre de coeficiente de 
autoinducción de la espira. Este coeficiente depende únicamente de la 
forma geométrica de la espira considerada. La unidad de autoinducción en 
el S.I. es el Henri (H) que equivale a un weber de inducción por amperio 
de corriente: 

A

m•T
1 =

A

Wb
1 = H 1

2

 

                                                 
4 Repase el alumno las leyes de Faraday y Lenz, así como el concepto de inductancia. 
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 El cálculo de los coeficientes de autoinducción es difícil en general. 
En el caso de un solenoide de longitud λ , área A y densidad de espiras5 n 
por el que circula una corriente I, el campo magnético vale: 
 

λλ IAn=BAn=NBA=nI=B 2
0m0 µΦ→µ  

 

 El coeficiente de proporcionalidad entre el flujo y la corriente es el 
coeficiente de autoinducción: 
 

λAn=
I

=L 2
0

m µ
Φ

 
 

que como se observa depende únicamente de factores geométricos6. La 
constante de permeabilidad magnética puede definirse en función de esta 
nueva unidad: 
 

m

H
10 x 4= 7-

0 πµ  
 

 Cuando la intensidad de la corriente de un circuito varía, el flujo 
magnético originado por él no es constante en el tiempo, por lo que se 
induce una FEM a lo largo del circuito. Para calcularla es necesario utilizar 
la definición del coeficiente de autoinducción en la forma:   
 

dt

dI
-L=

dt

d
-= mΦξ    FEM inducida. 

 

Inductancia mutua. Cuando dos circuitos, como los de la figura 30.18 se 
encuentran próximos el flujo magnético que los atraviesa está influenciado 
por la corriente del otro circuito. Así, escribiremos:  
 

 11222m2 IMIL +=Φ  y también  22111m1 IMIL +=Φ  
 

 

donde L representa el coeficiente de autoinducción de cada circuito y M12 
es el coeficiente de inductancia mutua entre los dos circuitos.  
 

                                                 
5 La densidad de espiras n es el número de espiras por unidad de longitud: n=N/λ  
6 Tanto las capacidades de los condensadores como las inductancias dependen únicamente de factores 
geométricos. 

 
Figura 30.18 Dos circuitos contiguos. El 
campo magnético en P se origina por la 
contribución parcial de I1 e I2. El flujo 
magnético a través de un circuito es la suma 
de dos términos proporcionales a I1 e I2, 
respectivamente. 
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 Los coeficientes de inductancia mutua cumplen las siguientes 
propiedades: 

 

1) Dependen solamente de la disposición geométrica de los 
circuitos. 

2) Siempre se cumple que M k j =M j k  para toda pareja de circuitos 
considerados. 

 

 Demostrad que esta última propiedad se verifica para dos solenoides 
concéntricos como los esquematizados en la figura 30.19. 
 

 

Demostración: Sea λ la longitud de los dos solenoides, r1,N1, (r2,N2 ) el radio y número de 
espiras del solenoide interior (exterior). 
 

( ) ( ) →πµ=π=Φ→µ= 1
2
1120

2
1122m1101 IrnnrBNInB λ  

( ) 2,1
2
1120

1

2m
1,2 Mrnn

I
M =πµ=Φ= λ  

4. Circuito RL. 
 

Una inductancia realiza un papel en el campo magnético semejante al 
que lleva a cabo un condensador en un campo eléctrico: ambos son 
almacenes de energía. Además, existe una expresión para el campo 
magnético semejante a la que nos da la energía por la existencia de un 
campo eléctrico, deducida anteriormente con la ayuda del condensador de 
placas plano-paralelas.  

 

El elemento en el que nos basaremos para el cálculo, es un solenoide 
que genera un campo magnético uniforme en su interior, cuya inductancia 
ya ha sido calculada.  

 

 Sea un circuito LR como el de la figura 30.20, con una autoinducción 
de coeficiente L, una resistencia óhmica R y una Fem de valor 0ξ . Cuando 
cerramos el circuito se genera una fuerza electromotriz por parte de la 
autoinducción que se opone a la variación de corriente. Aplicando las leyes 
de Kirchoff y la ley de Lenz, tenemos: 

 
 
Figura 30.19 Dos solenoides concéntricos 
de igual longitud. 
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0
dt

dI
L-IR0 =−ξ   (Ecuación 1.) 

 

 

 
 
Figura 30.20 Circuito LR. Al 
cerrarlo se genera un fuerza contra 
electromotriz. 

 

 
 

que integrada7 nos da la variación de la intensidad en el circuito en función 
del tiempo como: 
 

( ) 


ξ τ−− t

f
 t/LR0 e-1I=e-1

R
=I  

 

donde τ=L/R es la constante de tiempo característica del circuito y If la 
intensidad alcanzada finalmente en el circuito. En la figura 30.21 se ve la 
función exponencial de crecimiento de la intensidad del circuito vs el 
tiempo. 
 

 

 El papel del inductor en el circuito es oponerse al cambio brusco de 
corriente en él, de manera que la corriente final se alcanza suavemente. 
Una vez se ha alcanzado el valor final de la corriente, el inductor almacena 
una energía, como vamos a ver, pero no realiza ninguna acción sobre el 
circuito. 
 
 
 
 

                                                 
7 Es necesario separar las variables de integración I y t, integrar, calcular antilogs y aplicar las 
condiciones de contorno: I=ξ0/R para t→∞, I=0 para t=0. 

 
 
 
Figura 30.21 Variación de la intensidad de 
corriente en función de t en un circuito LR. 
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4.1 Energía magnética en una autoinducción. 
 

Multiplicando la ecuación 1 por la intensidad encontramos: 
 

dt

dI
LI+RII 2

0 =ξ  

donde:  
• el primer término representa la potencia suministrada por la batería 

al circuito,  
• el segundo es la potencia disipada por efecto Joule en la resistencia, 
• el último término con el coeficiente L representa la potencia que 

incide sobre la autoinducción.  
 

Obsérvese que si la corriente va aumentando, la potencia que se 
suministra al inductor es positiva, y en consecuencia la energía interna UL 
del inductor debe aumentar. Por el contrario, si la corriente disminuye, la 
potencia es negativa, lo que quiere decir que el circuito exterior absorbe 
potencia del inductor. Matemáticamente:  

 

2
f

If

0
LL

L LI
2

1
LIdIdU=U

dt

dI
LI=

dt

dU
∫∫ ==→  

 

que representa la energía almacenada en una bobina autoinductora, cuando 
la corriente pasa de intensidad nula a valer If. Esta expresión es semejante a 
la que nos da la energía almacenada en un condensador C con una carga Q:  
 

UL =(1/2)L If
2  expresión semejante a UC = (1/2)Q2/C. 

 

5. Energía del campo magnético. 
 

Como en el caso eléctrico, se puede interpretar esta energía como la 
que corresponde a la existencia del campo magnético, es decir, la energía 
almacenada al crear el campo en la región del espacio en el que éste existe, 
y que toma un valor proporcional al cuadrado del campo. 
 

Explícitamente, para el campo magnético: 
 

VolumendeUnidad
ticamagnEB

m   
é 

2
1

0

2

==
µ

η  
 

que representa la densidad de energía magnética en los puntos en los que 
existe el campo. Por el hecho de existir campo magnético en una región del 
espacio, podemos considerar que tenemos una densidad de energía 
almacenada.  
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Demostración: 
 

Vamos a considerar el solenoide ideal para determinar la densidad de 
energía en el campo magnético. Usaremos las expresiones de la inductancia 
y del campo magnético uniforme generado en el interior del solenoide. 
Tenemos: 
 

 

 Cuando ambos tipos de campos está presentes, la densidad de 
energía global, toma el valor:  







ε+

µ
=η+η=η 2

0
0

2

elm E
B

2

1  

6. Circuito LC (sin generador). 
 

 La figura 31.11 muestra un circuito simple sin inductancia y un 
condensador, denominado circuito LR y que no dispone de resistencia 
óhmica. Suponemos que inicialmente el condensador se encuentra cargado 
con Q0 y que se cierra el circuito en t=0. Aplicando Kirchoff tenemos8: 
 

0
C

Q

dt

Qd
L

dt

Qd
I0

C

Q

dt

dI
L

2

2

=+→=→=+  
 

                                                 
8 Recordemos que el sentido de la intensidad de malla al aplicar las leyes de Kirchoff se puede elegir 
arbitrariamente. La configuración del condensador y la autoinducción de la figura corresponde al 
condensador cargándose con intensidad creciente con el tiempo. 

Para el campo magnético 

λλ A
B

2

1
InA

2

1
LI

2

1
U

0

2
22

0
2

L µ
=µ==  

donde hemos usado el coeficiente de 
autoinducción del solenoide y la expresión 

del campo B 
 

λAnLnIB 2
00 µ=µ=  

Como λA  es el volumen, deducimos: 

.Vol de Unidad

mag EB

2

1

0

2

m =
µ

=η  

Para el campo eléctrico, condensador plano 

( )202
2

C Ed
d

A

2

1
CV

2

1

C

Q

2

1
U 





 ε

===  

( )AdE
2

1
U 2

0C ε=  

donde hemos usado la capacidad del 
condensador plano.  

Como Ad es el volumen, deducimos para 
la densidad de energía eléctrica  

2
0el E

2

1ε=η  

 
Figura 31.11. Circuito LC con el condensador 
cargado inicialmente. Al descargarse, la 
inductancia origina una fuerza 
contraelectromotriz.  
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 Observemos la analogía matemática y física que existe entre un 
circuito RL y una masa m unida a un muelle elástico:  

0kx
dt

xd
m

2

2

=+    ANÁLOGA   0
C

Q

dt

Qd
L

2

2

=+  

la propiedad inercial de la masa la juega la inductancia, el desplazamiento 
de la posición de equilibrio es la carga Q del condensador que obviamente 
oscila, y finalmente la elasticidad del muelle está representada ahora por la 
inversa de la capacidad del condensador: k ↔ 1/C. (Ver apéndice). 
 

 Si resolvemos la ecuación siguiendo los mismos pasos que en el 
muelle:  
 

⇒=ω+→=+ 0Q
dt

Qd
0Q

LC

1

dt

Qd 2
2

2

2

2

 

( )δ+ω==ω tcosQQi
LC

1
0  

 

La carga total del condensador oscila en este circuito entre los 
valores +Q0 y –Q0, con una frecuencia angular ω, propia o natural del 
circuito. Además Q0 y δ son las constantes de integración. 
 Observemos que este circuito (ideal) no es disipativo, pues la energía 
almacenada en el condensador inicialmente (Uel) pasa a quedar almacenada 
en la inductancia (Um) y así sucesivamente, como ocurre en el caso del 
muelle entre la energía potencial y cinética, quedando su suma constante. 
Así, considerando que I=dQ/dt, y el valor de ω2=1/LC, tenemos: 
 

( )δ+ω== tcos
C

Q

2

1

C

Q

2

1
U 2

2
0

2

e  

( )δ+ωω== tsinQL
2

1
LI

2

1
U 22

0
22

m  

inic

2
0

metot U
C

Q

2

1
UUU ==+=  

 

 
 
 
Figura 31.12. Q(t) y I(t) para un circuito 
LC. Comparadlas con el desplazamiento y 
la velocidad de un objeto unido a un 
muelle elástico. (Ver apéndice del tema). 
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7. Circuito LCR (sin generador) 
 

 La inserción en el circuito anterior de una resistencia, que por efecto 
Joule es un elemento disipativo, permite extender la analogía mecánica con 
un muelle al caso del movimiento amortiguado. Figura 31.13. 
 

 

 Considerando que la I=dQ/dt, y las leyes de Kirchoff, deducimos: 
 

0
C

Q

dt

dQ
R

dt

Qd
L0IR

C

Q

dt

dI
L

2

2

=++→=++  
 

ecuación análoga al caso del movimiento amortiguado, donde la resistencia 
disipativa R, desempaña ahora el papel del coeficiente de viscosidad. 
 

 Como en el caso del movimiento amortiguado, ahora la carga Q 
disminuye y oscila con el tiempo en la forma: 
 

( )δ+ω′= α− tcoseQQ t
0        siendo9: 

L2

R=α   22
02

2
2

L4

R

LC

1 α−ω=−=ω′  
 

 

 La constante α rige la pérdida de carga en el condensador, que se 
produce de forma exponencial. Esta α únicamente depende de R y L, y se 
                                                 
9 Recordar que existen dos constantes de integración a determinar por condiciones iniciales: Q0 y δ. 

 
 
 
Figura 31.13. Circuito LCR, sin generador. 

 
Figura 31.14 Gráficas de la evolución de la 
carga en el condensador y de la intensidad 
en función del tiempo, para un circuito 
RLC. 
 
Comparadlas con las gráficas del 
desplazamiento y la velocidad de un móvil 
en el m.v.a.s, con fuerza viscosa. (Ver 
apéndice del tema). 
 

La constante α aquí definida juega el 
mismo papel que λ, en el oscilador 
mecánico amortiguado. 
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relaciona con la constante τ obtenida para los circuitos RL: α=1/(2τ). 
Como la energía del circuito es proporcional a Q2, resulta que el ritmo de 
pérdida de energía E(t) del circuito es exponencial, decreciendo como: 
 

τ−α−α− ==→= /t
0

t2
0

t
0 eEeE)t(EeQQ  

 

 Finalmente, siguiendo la analogía mecánica, la frecuencia angular de 
las oscilaciones del circuito ω’ resulta ser diferente de la natural o propia ω 
por causa de la resistencia: ralentizándose el período de les oscilaciones. Si 
ω’ toma valor cero, tenemos movimiento crítico amortiguado. 
 

8. Energía en circuitos RLC. 
 

 Ya hemos visto que cuando en el circuito no existe el elemento 
disipativo representado por la resistencia R, la energía magnética y la 
energía eléctrica oscilan de manera que la suma de ambos permanece 
constante. Es lo mismo que pasa en el oscilador armónico, sin fricción, 
entre la energía potencial y cinética, cuya suma es la energía mecánica que 
permanece constante. 
 

 Al introducir la resistencia, si ésta es pequeña, la carga y la corriente 
oscilan con una frecuencia próxima al valor natural ω0, pero la amplitud de 
las oscilaciones va amortiguándose con el tiempo, de forma exponencial. 
Los valores de la carga y la corriente van disminuyendo y en consecuencia 
disminuye también la energía disponible en el circuito. 
 

 Conviene analizar este hecho más detalladamente: multiplicamos la 
ecuación diferencial del circuito RLC por la intensidad I, obteniendo: 
 

0RI
C

Q
I

dt

dI
IL 2 =++  

 

• El primer término representa el ritmo con el que se extrae o se 
almacena energía en la inductancia. En efecto, es la derivada de 
(1/2)LI2, y que puede ser positiva o negativa. 

• El segundo término representa el ritmo con el que se extrae o 
almacena energía en el condensador, ya que se trata de la derivada 
respecto del tiempo de la cantidad (1/2)Q2/C, valor que de nuevo 
puede ser positivo o negativo. 

• El último término I2R es el ritmo con que se disipa energía del 
circuito en la resistencia por efecto Joule, y éste es siempre 
positivo. 

 
Lectura recomendada: 
Propiedades magnéticas de los superconductores. P. Tipler, pág 998. 
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APÉNDICE 
 

Tabla de analogía entre un circuito RC y RL 
 

 Parámetro circuito RC Parámetro circuito RL 
Variable dependiente Q I 

Coeficiente de la 
variable 

1/C R 

Coef. de d(variable)/dt R L 
Constante temporal τ RC L/R 

 

Tabla de analogía entre los circuitos RLC y el movimiento armónico 
amortiguado. 

 

 Circuito RLC Movimiento harmónico 
Variable Q x 

Coef de la variable 1/C k 
Coef. de d(variable)/dt R b 

Coef de d2 (variable)/dt2 L m 
 


