Tema 5. Segundo Cuatrimestre. Oscilaciones en Circuitos LRC. Fisica General

TEMA 5. OSCILACIONES EN CIRCUITOS LRC.

1. Introduccion.

En los circuitos electricos, las resistencias son causa de pérdida de
energia, y los condensadores son los almacenes de la energia del campo
eléctrico. En efecto, ya se ha visto que la energia que se almacena entre las
placas de un condensador plano se puede interpretar como la energia
necesaria para la creacion del campo eléctrico entre sus placas, e incluso se
ha definido una densidad de gnergia en las regiones en las que hay campo
eléctrico, que es proporcionalIJJ al cuadrado de dicho campo E.

También se puede almacenar la energia en un campo magnético. Esta
tarea la realizan las inducciones. Las inducciones solamente acttan sobre el
circuito cuando existen corrientes variables con el tiempo, y ademas su
actuacion es inercial, oponiéndose siempre a las variaciones de corriente.

Los circuitos eléctricos, con resistencias, condensadores e
inducciones, son matematicamente y en consecuencia en su
comportamiento, semejantes a los osciladores mecanicos amortiguados, en
los que la resistencia es el elemento disipativo y hace el papel de fuerza de
friccion.

2. Circuitos RC.

Se denomina circuitos RC a aquellos en los que intervienen una
resistencia R y un condensador de capacidad C. En estos circuitos la
corriente no es estacionaria, sino que varia con el tiempo. Asi ocurre
cuando estando cargado inicialmente el condensador de la figura 26.37 se
cierra el interruptor. Un ejemplo es el circuito de descarga del flash en la
méaquina fotogréfica.

Descarga de un condensador.

En la figura 26.37 se observa un condensador con una carga inicial
+Q, sobre cada placa, conectado a una resistencia R y a un interruptor S.
Para corrientes estables (constantes) el condensador actia como un
interruptor abierto. Con el circuito abierto, la diferencia de potencial entre
los bornes es V=Q,/C, donde C es la capacidad del condensador.

En el instante que cerramos el circuito, la corriente que lo atraviesa
sera:

Y Ver Tipler, cuarta edicién Tema 25. Expresiones 25.13 'y 25.26. Ver Fishbane Tema 26, Expresion
26.12, etc.
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A medida que transcurre el tiempo, la carga del condensador ira
disminuyendo, por lo que la intensidad y la diferencia de potﬁmial que
genera seran funcion del tiempo. La intensidad, por definicion, es”:

__dQ

dt

(]
Figura 26.37. Circuito de descarga de un condensador de I&minas planas.

Si aplicamos la primera ley de Kirchoff en el sentido de la corriente,
tenemos:

Q Rr=0.99-9 1h0=-L sinB_qt)=Bet/R
C Q RC RC

donde B es una constante de integracion, que en el instante t=0
(condiciones iniciales) vale Q. Asi:

qt):Q)e—t/Rczq)e-t/T

donde T representa la constante temporaIEIdeI circuito RC, que representa
el tiempo que debe transcurrir para que la carga del condensador haya
disminuido en 1/e su valor inicial. La constante T, que caracteriza el flujo
de la carga a través del condensador, queda definida:

T=RC

La carga en el condensador disminuye exponencialmente con el
tiempo, como se ve en la figura 26.38. La constante temporal T tiene
ademas el significado del tiempo en el que el condensador se habria
descargado totalmente, si el ritmo de disminucion fuera constante e igual al
inicial. La intensidad de la corriente y la diferencia de potencial del
condensador también decrecen a ritmo exponencial, como se demuestra:

2 El signo menos procede de que la carga disminuye en el condensador.
3 Justifique por qué y deduzca que la constante temporal T tiene dimensiones de tiempo.
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V()= 2=y et

Figura 26.38 Descarga de un condensador.

F =R I

Carga de un condensador.

La figura 26.40 muestra el circuito utilizado para cargar un
condensador, inicialmente descargado. Cuando cerramos el circuito,
comienza a fluir carga que va almacenandose sobre las placas, hasta que el
voltaje del condensador iguala al de la FEM, con signo contrario.
Aplicando la primera regla de Kirchoff:

o [
i il

| r
. Te]

Figura 26.40 Circuito de carga de un condensador.

¢- 1 R- 9:0 = E:Rd_(g+9
C dt C
ya que en este caso la intensidad I=+dQ/dt. Multiplicando por C y
reordenando:

Tomando antilogaritmos y aplicando las condiciones iniciales, deducimos:
Q:(:E(l_ e-t/ RC)=Q (1_ e-t/T)

donde hemos aplicado que la carga final del condensador vale Q=C¢
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Como antes, la intensidad | decrece al ritmo determinado por la
constante temporal t=RC del circuito (el mismo que antes):

— -t/T
| =1 e

Ejercicio: Calculad la funcion V(t) entre las placas del condensador.

En las figures 26.41 y 26.42 se representa la carga e intensidad en
funcion del tiempo en este caso.

Q !
I:'?I _l:"-l"l Iy
Qy :
i
r=RC ! r ..'QL' — 1
Figura 26.41 Carga de un condensador en Figura 26.42 Intensidad de carga de un
funcién del tiempo. condensador.

Una vez el condensador se ha cargado completamente se comporta
como un circuito abierto, no dejando pasar mas corriente.

Ejercicio: Demostrar que la constante temporal T=RC tiene dimensiones de tiempo.

2.1 Energia en un circuito RC.

Queremos analizar el proceso de carga del condensador, desde el
punto de vista de la energia: la energia es suministrada por la FEM. Una
parte de ésta se usa obviamente en cargar el condensador, y la otra parte se
disipa en la resistencia. Durante todo el proceso de carga el valor & de la
FEM permanece constante, mientras que la ddp entre las placas del
condensador va aumentando desde 0 al valor final V= €.

dW,, =8dq=&(CdV)- W, =CE? Energia suministrada.

La energia almacenada en el condensador, toma el valor:
dW,, =vdq=MCdV) - W, =%CEZ Energia Condensador

Falta por controlar la mitad de la energia, que necesariamente se
debe haber disipado en la resistencia por el efecto Joule. Asi:

t =co EZoo CEZ
dEys =Vdq=RI*dt ~ By o= [ RIZdt=" [/ Tdt DBy o=~
t=0 0
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Independientemente del valor nominal de la resistencia R, la FEM ¢

y la capacidad C, la mitad de la energia queda almacenada en el
condensador y la otra mitad disipada en la resistencia R.

Ejercicios de aplicacion.
3. Inductancia.

Cuando sobre un circuito existe una corriente eléctrica variable, este
produce un campo magnetico que tambien varia. Aplicando la ley de
Faraday, se introducira una FEM adicional en el circuito, que se opane a la
variacion de corriente en el circuito (signo menos en la ley de Lenz)".

Asi, al conectar un circuito con una FEM, ésta genera una corriente
transitoria que va aumentando con el tiempo hasta alcanzar su valor estable
o final. En consecuencia, el campo magnético generado por el circuito va
incrementandose, al aumentar la intensidad de la corriente que lo recorre, e
igualmente el flujo magnético que atraviesa el circuito también aumenta.
La ley de Faraday-Lenz nos afirma que aparece una FEM inducida en el
circuito que S€ OPONE a cualquier cambio (incremento o disminucion) del
flujo magnético en el circuito. & =-d® ./ dt

Conclusion: Las corrientes variables en los circuitos originan efectos de
induccion que tratan de reducir la rapidez con la que varian las corrientes.

El flujo magnético que atraviesa un circuito depende de la corriente
existente en el mismo, de las corrientes presentes en los circuitos vecinos
(en ausencia de imanes permanentes), lo que origina dos coeficientes
denominados de autoinduccion y de inductancia mutua.

Coeficiente de autoinduccion. Consideremos una espira (aislada) por la que
circula una corriente 1. Como el campo magnético que genera es
proporcional a | en todo punto del espacio, el flujo magnético que atraviesa
la espira por la existencia de la corriente es proporcional a la intensidad 1.

d®, :—Ld—l FEM inducida.
dt dt

Donde L es una constante que recibe el nombre de coeficiente de
autoinduccion de la espira. Este coeficiente depende Unicamente de la
forma geometrica de la espira considerada. La unidad de autoinduccion en
el S.I. es el Henri (H) que equivale a un weber de induccion por amperio
de corriente:

D=Ll - &ing=-

p =W T
A A

* Repase el alumno las leyes de Faraday y Lenz, asi como el concepto de inductancia.
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El célculo de los coeficientes de autoinduccién es dificil en genetal.
En el caso de un solenoide de longitud A, area A y densidad de espiras™n
por el que circula una corriente I, el campo magnético vale:

B = ponl — @, = NBA = nABA = pon?l A\

El coeficiente de proporcionalidad entre el flujo y la corriente es el
coeficiente de autoinduccién:

)
L = |—m = uonZA}\

que como se observa depende unicamente de factores qeométricosE! La
constante de permeabilidad magnética puede definirse en funcion de esta
nueva unidad:

o7 H

=4nix 1
Ho m

Cuando la intensidad de la corriente de un circuito varia, el flujo
magnético originado por él no es constante en el tiempo, por lo que se
induce una FEM a lo largo del circuito. Para calcularla es necesario utilizar
la definicion del coeficiente de autoinduccion en la forma:

&E=- %z— Lg—l FEM inducida.

Inductancia mutua. Cuando dos circuitos, como los de la figura 30.18 se
encuentran proximos el flujo magnético que los atraviesa esta influenciado
por la corriente del otro circuito. Asi, escribiremos:

Do =Lyl ;+ Ml

WA

I;

1K
—

L N8 ——

—/\W VA

Circuit 1 Circuit 2

ytambien @ 4 =L41 1 +Myl 5

Figura 30.18 Dos circuitos contiguos. El
campo magnético en P se origina por la
contribucion parcial de I, e l,. El flujo
magnético a través de un circuito es la suma
de dos términos proporcionales a I, e Iy,
respectivamente.

donde L representa el coeficiente de autoinduccion de cada circuito y My,
es el coeficiente de inductancia mutua entre los dos circuitos.

® La densidad de espiras n es el niimero de espiras por unidad de longitud: n=N/A
® Tanto las capacidades de los condensadores como las inductancias dependen Gnicamente de factores

geométricos.
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Los coeficientes de inductancia mutua cumplen las siguientes
propiedades:

1) Dependen solamente de la disposicion geometrica de los
circuitos.

2) Siempre se cumple que M ; =M para toda pareja de circuitos
considerados.

Demostrad que esta Ultima propiedad se verifica para dos solenoides
concentricos como los esquematizados en la figura 30.19.

-

.* / - . . o
.?O?} S * “’ {} : 'z Figura 30.19 Dos solenoides concentricos

li'fl

T rJr-«“-\'h”:'t" 4—1—1-5"':1"';' de igual longitud.
-t h,é_, r;..i:..,.f..-'.-urf-"

o —-—..__..l..l'-.ﬁ_.l"a. ] ;

Lurmns WM

Ny [a)

turns

Demostracién: Sea Ala longitud de los dos solenoides, ri,Ns, (r2,N; ) el radio y ndmero de
espiras del solenoide interior (exterior).

B1=HoN1l 1 - P rp=N,B, (le)zlionznl)\(mlz) 1 -
Nblquj—er:Uonzr‘l)\(T‘rlz)zwﬁ,z

1

4. Circuito RL.

Una inductancia realiza un papel en el campo magnético semejante al
que lleva a cabo un condensador en un campo eléctrico: ambos son
almacenes de energia. Ademas, existe una expresion para el campo
magnético semejante a la que nos da la energia por la existencia de un
campo eléctrico, deducida anteriormente con la ayuda del condensador de
placas plano-paralelas.

El elemento en el que nos basaremos para el calculo, es un solenoide
que genera un campo magnético uniforme en su interior, cuya inductancia
ya ha sido calculada.

Sea un circuito LR como el de la figura 30.20, con una autoinduccion
de coeficiente L, una resistencia 6hmica R y una Fem de valor &g. Cuando
cerramos el circuito se genera una fuerza electromotriz por parte de la

autoinduccion que se opone a la variacion de corriente. Aplicando las leyes
de Kirchoff y la ley de Lenz, tenemos:
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&~ R- L3—1=0 (Ecuacion 1.)

rl' .,;"*.. I
2 |+ Figura 30.20 Circuito LR. Al

o cerrarlo se genera un fuerza contra
Ta L= L5 electromotriz.

i

que integrada™ nos da la variacion de la intensidad en el circuito en funcion

del tiempo como:
| =%0(1- e /L )=, @ e_%ﬁ

donde 1=L/R es |@ CONStante"de tIEMPA caracteristica del circuito y Is la
intensidad alcanzada finalmente en el circuito. En la figura 30.21 se ve la
funcidén exponencial de crecimiento de la intensidad del circuito vs el
tiempo.

Figura 30.21 Variacion de la intensidad de
corriente en funcion de t en un circuito LR.

El papel del inductor en el circuito es pponerse al cambig brusco de
corriente en ¢él, de manera que la corriente final se alcanza suavemente.
Una vez se ha alcanzado el valor final de la corriente, el inductor almacena
una energia, como vamos a ver, pero no realiza ninguna accion sobre el
circuito.

" Es necesario separar las variables de integracion I y t, integrar, calcular antilogs y aplicar las
condiciones de contorno: 1=¢y/R para t - o, 1=0 para t=0.
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4.1 Energia magnetica en una autoinduccion.

Multiplicando la ecuacion 1 por la intensidad encontramos:

2 dl
&l =1 “R+LI — m
donde:
el primer término representa _ por la bateria
al circuito,

» el segundo es _ por efecto Joule en la resistencia,

e el dltimo término con el coeficiente L representa la potencia que
incide sobre la autoinduccion.

Obsérvese que si la corriente va aumentando, la potencia que se
suministra al inductor es positiva, y en consecuencia la energia interna U_
del inductor debe aumentar. Por el contrario, si la corriente disminuye, la
potencia es negativa, lo que quiere decir que el circuito exterior absorbe
potencia del inductor. Matematicamente:

dy__ 1
T du, = [LIdl =ZLI7
dt dt il | f 2 f

que representa la energia almacenada en una bobina autoinductora, cuando
la corriente pasa de intensidad nula a valer I;. Esta expresion es semejante a
la que nos da la energia almacenada en un condensador C con una carga Q:

U, =(1/2)L I expresién semejante a Uc = (1/2)Q%/C.

5. Energia del campo magneético.

Como en el caso eléctrico, se puede interpretar esta energia como la

que corresponde a la existencia del campo magnetico, es decir, -

y que toma un valor proporcional al cuadrado del campo.

Explicitamente, para el campo magnético:

_1B* _ Emagnética

2 U, Unidad deVolumen

m

que representa la densidad de energia magnética en los puntos en los que
existe el campo. Por el hecho de existir campo magneético en una region del
espacio, podemos considerar que tenemos una densidad de energia
almacenada.
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Demostracion:

Vamos a considerar el solenoide ideal para determinar la densidad de
energia en el campo magnético. Usaremos las expresiones de la inductancia
y del campo magnético uniforme generado en el interior del solenoide.
Tenemos:

Para el campo magnético Para el campo eléctrico, condensador plano
1,., 1 2 2 1B? 1Q21210A2
U =LI2=2pMn22=22 AN | Uo=2 =cv @@Ed
-2 ot 2 U c2c 2 )
donde hemos usado el coeficiente de 1 2
autoinduccion del solenoide y la expresion Uc = €0 E” (Ad)
del campo B donde hemos usado la capacidad del
5 condensador plano.
B=ponl L=pon“AA Como Ad es el volumen, deducimos para
Como AA es el volumen, deducimos: la densidad de energia eléctrica
2 1 >
r]mle_: _ E mag Nel ZESOE
21y Uni dad de Vol.

Cuando ambos tipos de campos estad presentes, la densidad de
energia global, toma el valor:

1[B? 5
N=Nm+Ne =£%"‘30E E
0

6. Circuito LC (sin generador).

La figura 31.11 muestra un circuito simple sin inductancia y un
condensador, denominado circuito LR y que no dispone de resistencia
6hmica. Suponemos que inicialmente el condensador se encuentra catgado
con Qg Y que se cierra el circuito en t=0. Aplicando Kirchoff tenemo

2
|_d_|+9_o_, | _d_ﬂ R |_d_Q+9_
dt C dt dt?2 C
L W

— Figura 31.11. Circuito LC con el condensador
0 o cargado inicialmente. Al descargarse, la
L il inductancia origina una fuerza

i E "t contraelectromotriz.

|

® Recordemos que el sentido de la intensidad de malla al aplicar las leyes de Kirchoff se puede elegir
arbitrariamente. La configuracion del condensador y la autoinduccidon de la figura corresponde al
condensador cargandose con intensidad creciente con el tiempo.

10
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Observemos la analogia matematica y fisica que existe entre un
circuito RL y una masa m unida a un muelle elastico:

2
md—+kx -0 ANALOGA Ld—Q+9 =0
dt 2 dt2 C

la propiedad Inercial de la masa la juega la inductancia, el desplazamiento
de la posicidn de equilibrio es la carga Q del condensador que obviamente
oscila, y finalmente la elasticidad del muelle esta representada ahora por la
inversa de la capacidad del condensador: K < 1/C. (Ver apéndice).

Si resolvemos la ecuacion siguiendo los mismos pasos que en el
muelle:

2
Q. 1 509 —+oo2Q—OD

dt? LC
1 .

W= =Q,cos(wt +0
JLC Q=Qycos )

La carga total del condensador oscila en este circuito entre los
valores +Qp y —Qo, con una frecuencia angular w, propia o natural del
circuito. Ademas Q, y & son las constantes de integracion.

Observemos que este circuito (ideal) no es disipativo, pues la energia
almacenada en el condensador inicialmente (Ug) pasa a quedar almacenada
en la inductancia (Uy,) y asi sucesivamente, como ocurre en el caso del
muelle entre la energia potencial y cinética, quedando su suma constante.
Asi, considerando que 1=dQ/dt, y el valor de w’=1/LC, tenemos:

1@ _1Q

—= ——cos wt+6
Ve = 2C 2C )

UmzéLl :ELmzcggsi n%(wt +3)

1
lJtO'[ :Ue+Um ﬁ—q nic

Y If Ty
\\—j Figura 31.12. Q(t) y I(t) para un circuito
LC. Comparadlas con el desplazamiento y
[ la velocidad de un objeto unido a un
ol """'f,:x‘m\‘ muelle elastico. (Ver apéndice del tema).
T / \

11
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7. Circuito LCR (sin generador)

La insercion en el circuito anterior de una resistencia, que por efecto
Joule es un elemento disipativo, permite extender la analogia mecanica con
un muelle al caso del movimIENtO:amortiguade. Figura 31.13.

o oas

W
-Q e )
e

: dl Figura 31.13. Circuito LCR, sin generador.
=il

Considerando que la 1I=dQ/dt, y las leyes de Kirchoff, deducimos:

L4194 Rep L 979,R9Q, O

dt C dt?2 dt C

ecuacion analoga al caso del movimiento amortiguado, donde la resistencia
disipativa R, desemparia ahora el papel del coeficiente de viscosidad.

Como en el caso del movimiento amortiguado, ahora la carga Q
disminuye y oscila con el tiempo en la forma:

QQ,e " cos(wt +3) siendo’
R 2 1 R?
= wZ:_—_Z: 2—(]2

2L LC 4L
M Figura 31.14 Graficas de la evolucion de la
T " carga en el condensador y de la intensidad
——% _’f A . en funcion del tiempo, para un circuito

v RLC.

Comparadlas con las graficas del

desplazamiento y la velocidad de un movil

en el m.v.as, con fuerza viscosa. (Ver
™~ apéndice del tema).

1 I||' ..l". -II-_.-F--\.\H‘ - _\‘1‘\.-- ..-___‘_ l ) N -
-;"I LV 4 et La constante o aqui definida juega el
%,

mismo papel que A, en el oscilador
mecanico amortiguado.

La constante a rige la pérdida de carga en el condensador, que se
produce de forma exponencial. Esta a Unicamente depende de Ry L, y se

% Recordar que existen dos constantes de integracion a determinar por condiciones iniciales: Qu y .

12
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relaciona con la constante T obtenida para los circuitos RL: a=1/(21).
Como la energia del circuito es proporcional a Q?, resulta que el ritmo de
pérdida de energia E(t) del circuito es exponencial, decreciendo como:

Q:%e—dt R Et)zEOe_ZGt =Eoe—t/'[

Finalmente, siguiendo la analogia mecéanica, la frecuencia angular de
las oscilaciones del circuito w’ resulta ser diferente de la natural o propia w
por causa de la resistencia: ralentizandose el periodo de les oscilaciones. Si
w’ toma valor cero, tenemos movimiento critico amortiguado.

8. Energia en circuitos RLC.

Ya hemos visto que cuando en el circuito no existe el elemento
disipativo representado por la resistencia R, la energia magnetica y la
energia eléctrica oscilan de manera que la suma de ambos permanece
constante. Es lo mismo que pasa en el gscilador armonico, sin friceion,
entre la energia potencial y cinética, cuya suma es la energia mecénica que
permanece constante.

Al introducir la resistencia, si ésta es pequefia, la carga y la corriente
oscilan con una frecuencia proxima al valor natural wy, pero la amplitud de
las oscilaciones va amortiguandose con el tiempo, de forma exponencial.
Los valores de la carga y la corriente van disminuyendo y en consecuencia
disminuye también la energia disponible en el circuito.

Conviene analizar este hecho més detalladamente: multiplicamos la
ecuacion diferencial del circuito RLC por la intensidad I, obteniendo:

| Ld—|+l 9+| ’R=0
dt C

» El primer término representa el ritmo con el que se extrae o se
almacena energia en la inductancia. En efecto, es la derivada de
(I2)LF, y que puede ser positiva 0 negativa.

« EIl segundo término representa el ritmo con el que se extrae o
almacena energia en el condensador, ya que se trata de la derivada
respecto del tiempo de la cantidad [L/2)Q%/€, valor que de nuevo
puede ser positivo o0 negativo.

« El altimo término I¥R es el ritmo con que se disipa energia del
circuito en la resistencia por efecto Joule, y gsSie €s Siempre

positivo.

Lectura recomendada:
Propiedades magneticas de los superconductores. P. Tipler, pag 998.
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APENDICE

Oscilaciones en Circuitos LRC. Fisica General

Tabla de analogia entre un circuito RCy RL

Parametro circuito RC  Parametro circuito RL
Variable dependiente Q I
Coeficiente de la 1/C R
variable
Coef. de d(variable)/dt R L
Constante temporal t RC L/R

Tabla de analogia entre los circuitos RLC v el movimiento armonico

amortiquado.

Circuito RLC Movimiento harmdnico
Variable Q X
Coef de la variable 1/C k
Coef. de d(variable)/dt R b
Coef de d* (variable)/dt* L m

14



