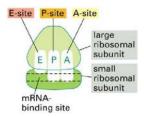
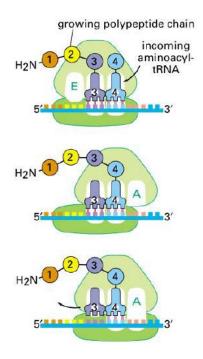

Introducción

- ⇒ El ribosoma es una estructura granular de pequeño tamaño que se encuentra en todas las células (procariotas y eucariotas) y a cuyo nivel se produce la síntesis de proteínas.
- ⇒ Fueron descubiertos por Palade en 1953.
- ⇒ Miden entre 15 y 20 nm y son fuertemente densos a los electrones (en microscopios electrónicos se ven casi negros).
- ⇒ Está formado por muchas proteínas diferentes y varias moléculas de ARN_r.
- ⇒ En las células eucariotas los encontramos en dos poblaciones de ribosomas.
 - ⇒ Adheridos a las membranas del retículo endoplásmico rugoso.
 - ⇒ Otros se encuentran libres en el citoplasma
 - ⇒ Unidos en un número de 5 10 polirribosoma o polisoma.

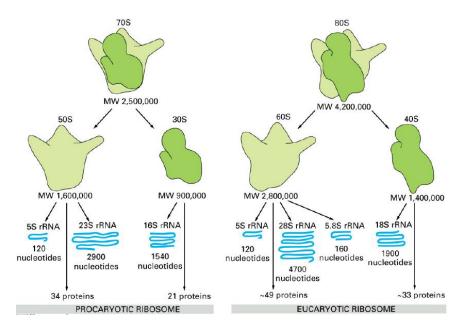


- ⇒ Los ribosomas son todos iguales. Un mismo ribosoma puede estar sintetizando una proteína unida al retículo endoplásmico rugoso y al poco en el citoplasma sintetizando otra proteína
 - ⇒ Donde se ubique depende de la proteína que esté sintetizando:
 - ⇒ Con un péptido señal estará en el retículo endoplásmico rugoso.
 - ⇒ Sin péptido señal estará en el citoplasma
- ⇒ Las **subunidades 40s** y **60s están separadas** y se unen cuando tienen que traducir un ARN_m.
- ⇒ Los ribosomas están en todas las células.
 - ⇒ Los procariotas son más pequeños que los eucariotas.
- ⇒ Los ribosomas están en
 - ⇒ Citoplasma
 - ⇒ Cloroplastos
 - ⇒ Mitocondrias


Estructura

- ⇒ Los ribosomas están formados por dos subunidades
 - ⇒ Una subunidad grande de coeficiente de sedimentación 60s
 - ⇒ Una subunidad pequeña de coeficiente de sedimentación de 40s.
- ⇒ La subunidad grande cataliza la unión del aminoácido a la cadena peptídica.
- \Rightarrow En la subunidad pequeña se posicionan los ARN_t para poder leer el ARN_m.
- ⇒ Cuando dos subunidades se unen a un ARN_m se traduce la proteína.
- ⇒ Cuando llega a un codón STOP la traducción cesa, las subunidades se separan y el ARN_m queda libre para ser leído por otro ribosoma.
- ⇒ El ribosoma eucarionte incorpora dos aminoácidos por segundo a la cadena polipeptídica, los procariontes 20 aminoácidos por segundo.

⇒ Los ribosomas poseen **cuatro sitios** de unión a ARN:


- ⇒ Sitio de unión del ARN_m
- ⇒ Sitio P (peptidil)
- ⇒ Sitio A (aminoacil)
- ⇒ Sitio E (salida)

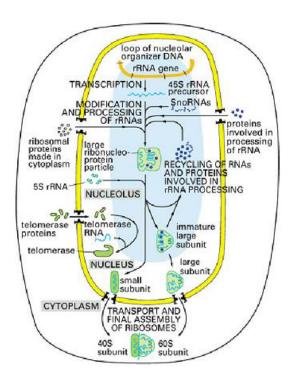
- ⇒ Los sitios A y P están muy pegados para que cuando los ARNt se unan al ribosoma desplacen al otro ARNt la distancia exacta de un codón de tres bases y la lectura se pueda dar sin errores.
 - \Rightarrow La síntesis de proteínas es un proceso de alta fiabilidad que posee muy pocos fallos durante la síntesis de los polipéptidos.

Composición química

- ⇒ Estructura muy hidratada
 - \Rightarrow 70 % agua
 - ⇒ 30 % del peso está compuesto por:
 - \Rightarrow 60% por ARN_r
 - \Rightarrow 40 % proteínas
- ⇒ La composición de los ribosomas eucariotas es diferente de los ribosomas procariotas

⇒ Organización molecular de los ribosomas

- ⇒ La función del ribosoma depende sobre todo del ARN_r, cataliza el enlace peptídico y posiciona los ARN_t.
- ⇒ Las proteínas, se piensa, sólo para ubicar los ARN_r y que para que puedan funcionar.
- ⇒ Los ARN₁ forman el "corazón del ribosoma" y se acompleja con diferentes proteínas.
- ⇒ El ribosoma es capaz de autoensamblarse.
- ⇒ En procariotas el 30s está dentro, protegido por proteínas:
 - ⇒ El ARN llega a la superficie en varios puntos.


Biogénesis del ribosoma

- ⇒ Se forma en el nucleolo.
- ⇒ Existen millones, sintetizan proteínas.
- ⇒ Cuando una célula se divide duplica sus ribosomas, cuando crece y está activa necesita ribosomas y continuamente está formando.
- ⇒ Existen varias copias de cada gen que codifica para los ARN_r
- ⇒ Procariotas
 - \Rightarrow Tres genes de ARN_r con siete copias de cada gen.
 - ⇒ Los genes 16s y 23s están juntos en el cromosoma. El 5s está separado de ellos.
 - ⇒ Las proteínas se sintetizan mediante ribosomas preexistentes, se acomplejan y forman ribosomas con ARN₁.

⇒ Eucariotas:

- ⇒ Se produce la síntesis del ARN_r
- ⇒ Se sintetizan las proteínas
- ⇒ Se transportan los ribosomas al citoplasma
- ⇒ Se ensamblan
- ⇒ Existen cuatro ARN_r distintos (5s, 5'8s, 28s y 18s)
 - ⇒ Los ARN_r 5'8, 18 y 28 están contiguos y se transcriben a la vez.
 - ⇒ Se da un solo transcrito que asegura la misma cantidad de estos ARN_r. Se encuentran en cromosomas concretos en el hombre, concretamente en los brazos cortos de los cromosomas acrocéntricos (13, 14, 15, 21 y 22).
 - \Rightarrow Este transcrito sintetizado por la ARN polimerasa I, que es modificado y cortado.
 - ⇒ Están muy repetidos (200 aprox.)
 - ⇒ El ARN_r 5s está codificado por un gen que se encuentra en otro cromosoma, fuera del nucleolo (en el hombre está ubicado en los brazos largos del cromosoma 1, en la región 1q42.13)

 \Rightarrow Las subunidades se forman en el nucleolo y salen separadas del núcleo por los poros. Sólo cuando se una a un ARN_m el ribosoma será funcional.

