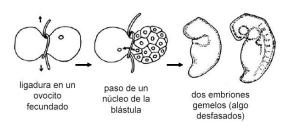
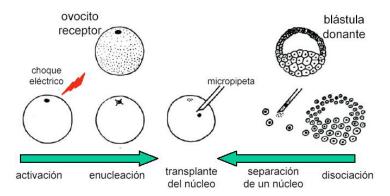
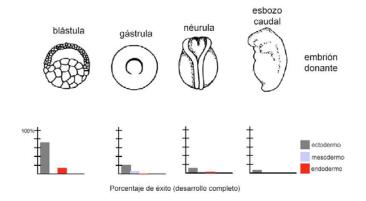
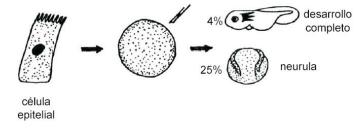

Introducción

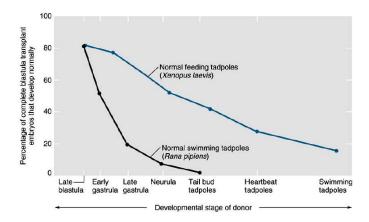

- ⇒ Control de la expresión génica
 - ⇒ En un organismo multicelular existen muchos tipos celulares (diferenciación). Tienen la misma información genética, pero poseen morfología y fisiología distintas.
 - ⇒ La expresión del genoma es distinta
 - ⇒ Se activan genes distintos en diferentes momentos
 - ⇒ Se expresan con distinta intensidad (cantidad de ARN_m transcritos).
 - ⇒ Diferentes tipos celulares utilizan parcialmente una información común a todos ellos (prot. Histonas, prot. Citoesqueleto) con **distinta intensidad**. Otras sólo se dan en tipos celulares específicos (hemoglobina).
- ⇒ <u>DIFERENCIACIÓN CELULAR</u>: especialización de las células para realizar una función concreta.
- ⇒ Bases de la diferenciación
 - ⇒ Todas las células del organismo poseen toda la información genética
 - ⇒ Las células diferenciadas sólo utilizan parte de esa información
 - ⇒ La diferenciación es reversible.
- ⇒ Conservación de toda la información. Utilización parcial de la misma.
 - ⇒ Cromosomas politénicos, activación de las distintas unidades de transcripción

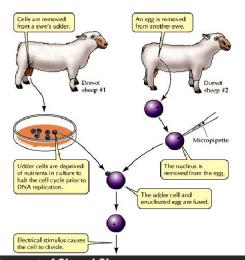

- ⇒ En distintas fases del desarrollo aparecen abultamientos donde se produce el ARN
 - ⇒ En una parte se sintetizan unas proteínas y en otra otras proteínas distintas. Utiliza información distinta según la fase del desarrollo donde se encuentre.

Reversibilidad de la diferenciación. Experiencias

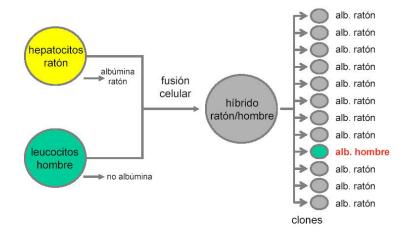

⇒ Experiencia de Spemann

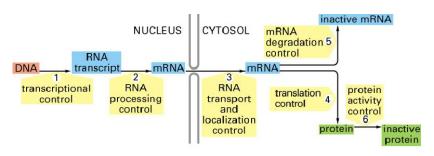

⇒ Técnica de transplante nuclear


⇒ Experiencias de Briggs y King (Rana pipiens)


⇒ Experiencias de Gurdon (Xenopus laevis)

⇒ Porcentaje de éxito en ambas experiencias


⇒ Experiencias de Wilmut

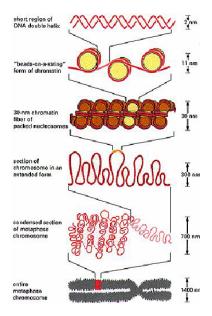

Cell Type	No. (%) of Fused Couplets	No. (%) Recovered from Oviduct	No. Cultured In Vitro	No. (%) of Morulae/ Blastocysts	No. of Morulae/ Blastocysts Transferred	No. (%) of Pregnancies/ Recipients	No. (%) of Live lambs Born*
Mammary epithelium	277 (63.8)	247 (89.2)	0	29 (11.7)	29	1/13 (7.7)	1 (3.4)
Fetal fibroblast	172 (84.7)	124 (86.7) —	 24	34 (27.4) 13 (54.2)	34 6	4/10 (40.0) 1/6 (16.6)	2 (5.9) 1 (16.6)†
Embryo-derived	385 (82.8)	231 (85.3) —	92	90 (39.0) 36 (39.0)	72 15	14/27 (51.8) 1/5 (20.0)	4 (5.6) 0

^{*}As a proportion of morulae or blastocysts transferred †This lamb died within a few minutes from birth. Data from Wilmut et al. (1997).

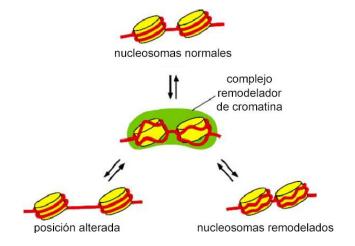
⇒ Experiencias de hibridación somática

Control de la expresión genética

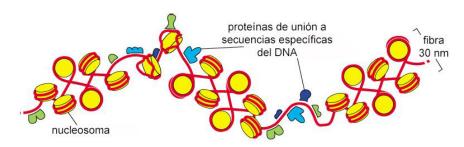
⇒ Niveles de control

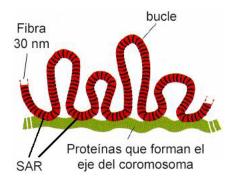

- ⇒ Cromatina
- ⇒ Transcripción
- ⇒ Post-transcripción
- ⇒ Traducción
- ⇒ Post-traducción

⇒ Cromatina


- ⇒ Estructura *permisiva* (accesibles a las proteínas que transcriben el ADN).
 - ⇒ La cromatina hipercondensada NO es permisiva.
- ⇒ Sitios hipersensibles a la ADNasa (a bajas concentraciones la ADNasa se une a estas zonas permisivas).
- ⇒ Control epigenético (control que no hace intervenir la secuencia del ADN)
 - ⇒ Metilación de citosinas
 - ⇒ Acetilación de histonas
 - \Rightarrow ARNs no codificantes uniéndose a él. (P. Ej. El segundo cromosoma X de la mujer se inactiva al unirse a uno de estos ARN no codificantes).
- ⇒ Reconfiguración de la secuencia del ADN
 - ⇒ En las células de defensa una pequeña porción de ADN se pierde.

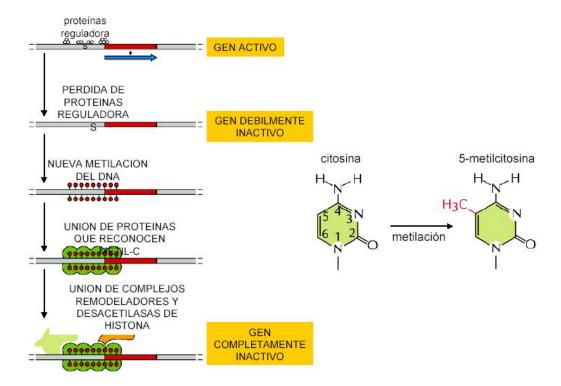
⇒ Estructura de la cromatina


⇒ Grados de compactación


⇒ Complejos remodeladores de la cromatina

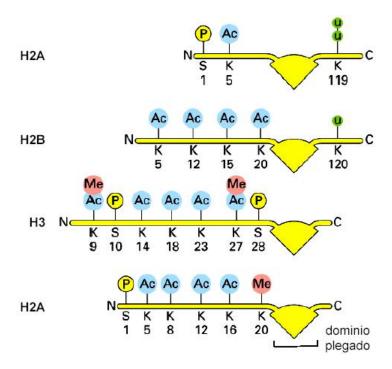
- \Rightarrow El complejo remodelador "suelta" el ADN de los octámeros y se unen a él otras proteínas.
- ⇒ Descondensación selectiva de la cromatina
 - ⇒ Si la cromatina está muy condensada (heterocromatina) nunca se transcribe. Se tiene que soltar un poco de los octámeros para ser accesible y poder transcribirse

⇒ Plegamientos en forma de bucles en la cromatina. SAR

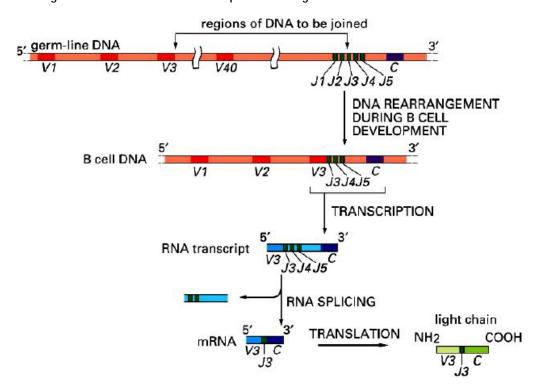


⇒ Las proteínas SAR regulan la transcripción del bucle en su unión de proteínas no histonas.

Regulación epigenética

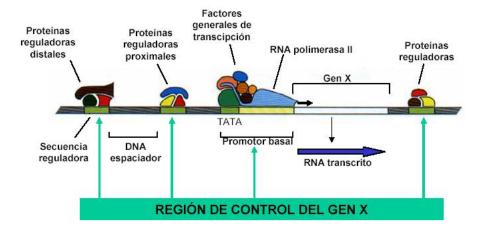

⇒ Metilación de citosinas

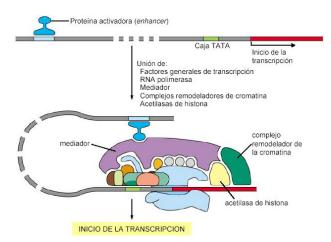
⇒ La metilación inhibe la transcripción a mayor metilación menor transcripción.



⇒ Modificación de histonas

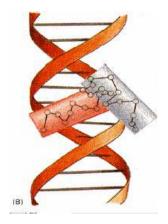
⇒ Se acetilan sobre las *Lys* y las *Ser.* La acetilación modifica la unión histona-ADN, a mayor acetilación mayor transcripción (también se puede dar la metilación o la fosforilación).


⇒ Reconfiguración del ADN con irreversible pérdida de fragmentos

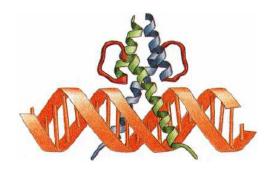

⇒ Permite la variabilidad genética. P. Ej. Se da en el sistema inmunitario y la fabricación de anticuerpos.

Control de la expresión genética en la transcripción

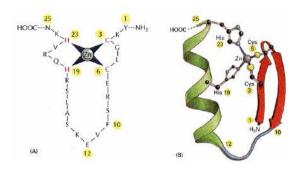
- ⇒ **Regulación cis:** secuencias reguladoras (ácidos nucleicos).
- ⇒ **Regulación trans:** factores de transcripción y proteínas reguladoras.
- ⇒ Región de control genético



- ⇒ Los promotores sólo son reconocidos por factores de transcripción generales y proximales controlan los genes constitutivos (*housekeeping genes*), es decir, los que se expresan en todas las células del organismo.
- ⇒ Los factores de transcripción que actúan sobre los promotores distales, controlan la expresión de los genes inducibles, que se expresan solamente en tejidos específicos.
- ⇒ Activación a distancia (enhancers o amplificadores)



Factores de transcripción


⇒ Hélice-bucle-hélice

⇒ Cremallera de leucina

⇒ Dedos de zinc

- ⇒ Receptores de hormonas: esteroideas, tiroideas, ácido retinoico.
- ⇒ Las proteínas reguladoras de genes se ensamblan con frecuencia sobre el ADN formando complejos.
- ⇒ La estructura y función de esos complejos depende de secuencias específicas (cis) en el ADN.
- ⇒ Los complejos reguladores pueden activar o reprimir la transcripción
- ⇒ Incluso una misma proteína puede formar parte tanto de complejos de activación como de represión.
- ⇒ Control combinatorio
 - ⇒ Las combinaciones de unas pocas proteínas reguladoras pueden generar muchos tipos celulares diferentes durante el desarrollo → especialización.

Control post-transcripcional de la expresión genética

- ⇒ Montaje alternativo (*splicing*): combinación diferente de los exones
 - ⇒ P. Ej. La calcitonina (Células C de la tiroides) y el CGRP (producida en el cerebro) proceden de un mismo gen, pero el ARN_m definitivo es distinto debido al diferente montaje de los exones.
- ⇒ Edición del ARN_m: modificándolo químicamente
- ⇒ Sitio de poliadenilación: ARN_m más cortos o más largos
- ⇒ Transporte al citoplasma: evitar la salida del ARN_m
- ⇒ Vida media del ARN_m: se puede variar el tiempo de vida del ARN en el citoplasma
- ⇒ Interferencia del ARN (ARN_i): evita la traducción uniéndose al ARN_m que no se traducirá.

Control traduccional de la expresión genética

- ⇒ Unión de proteínas a regiones 5′ o 3′ no traducidas
- ⇒ Modificación de los factores de iniciación
- ⇒ Sitios internos de entrada al ribosoma (IRES)
- ⇒ <u>Modificaciones post-traducciona</u>les
 - ⇒ Remodelación química
 - ⇒ Acetilación
 - ⇒ Carboxilación
 - ⇒ Hidroxilación
 - ⇒ Fosforilación
 - ⇒ Glicosilación

- \Rightarrow Acilación
- ⇒ Formación de puentes disulfuro
 ⇒ Plegamiento
 ⇒ Degradación