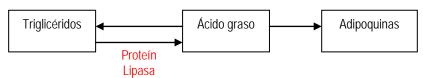
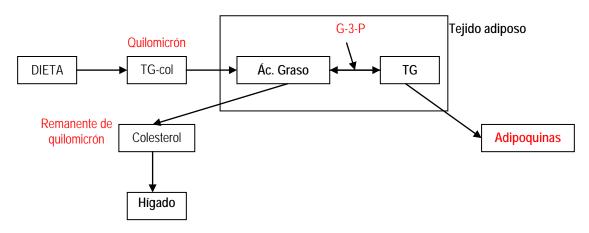
Definición de lípido y clasificación

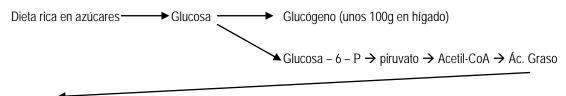
- ⇒ LÍPIDO: derivado natural de los ácidos grasos resultante de una condensación con alcoholes o aminas.
- ⇒ Químicamente son un compuesto formado por una cadena hidrocarbonada con un grupo carboxilo (COOH).
- ⇒ En la dieta tomamos lípidos en forma, generalmente, de triacilglicéridos, ya sean en forma de grasas sólidas o líquidas.
- ⇒ Cuando tomamos los lípidos en la dieta, lo que aumenta en sangre es una lipoproteína denominada quilomicrón (97'98 % de triglicéridos y 2 3 % de proteínas).
- ⇒ Clasificación:
 - ⇒ Lípidos saponificables
 - ⇒ Acilglicéridos (glicerol + ácido graso)
 - ⇒ Glicerofosfolípidos (glicerol + ácido graso + fosfato + alcohol)
 - ⇒ Donde el alcohol puede ser: colina, etanolamina, serina, inositol...
 - ⇒ Esfingolípidos (esfingosina + ácido graso + grupo polar)
 - ⇒ Céridos (alcohol de cadena larga + ácido graso)
 - ⇒ Lípidos no saponificables
 - \Rightarrow Isoprenoides
 - ⇒ Terpenos
 - ⇒ Esteroides
 - \Rightarrow Eicosanoides


Funciones celulares y fisiológicas de los lípidos

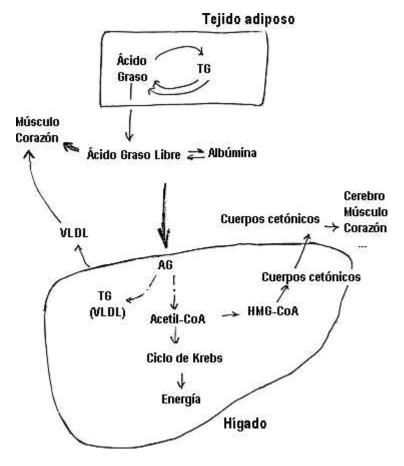
- ⇒ Ácidos grasos
 - ⇒ Fuel metabólico y ahorro de azúcar
 - ⇒ Precursor de los eicosanoides
 - ⇒ Parte fundamental de los lípidos simples y complejos.
- ⇒ Triacilglicéridos
 - ⇒ Almacenamiento de energía.
 - ⇒ Forma de transporte de los ácidos grasos.
 - ⇒ Función protectora y aislante.
- ⇒ Cuerpos cetónicos
 - ⇒ Fuel metabólico y ahorro de azúcar.
- ⇒ Fosfolípidos
 - ⇒ Componentes esenciales de las membranas celulares.
 - ⇒ Almacén de ácidos grasos poli-insaturados.
 - \Rightarrow Generan "señales" reguladoras.
- ⇒ Esfingolípidos
 - ⇒ Componentes de la estructura de las membranas.
 - ⇒ "Antígeno" de superficie.
 - ⇒ Generan "señales".
- \Rightarrow Colesterol
 - ⇒ Componentes estructurales de las membranas.
 - ⇒ Precursor de los esteroides, vitamina D y ácidos biliares.


Visión general de los lípidos en humanos

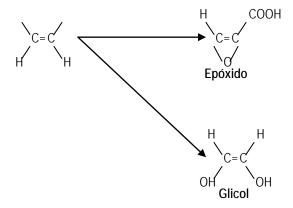
- ⇒ Importancia de los lípidos en la dieta
 - ⇒ Conforman un compuesto biológico con un aporte energético muy grande (9 Kcal/g), por encima de azúcares (4 Kcal/g), proteínas (4 Kcal/g) y el alcohol (7 Kcal/g).
 - ⇒ Se almacena sin fijar agua, con lo que aumenta la cantidad de materia rica en energía reduciendo el peso del organismo.
 - ⇒ Son una fuente de vitaminas liposolubles importante.
 - ⇒ Aportan los ácidos grasos esenciales para el cuerpo.
 - ⇒ Provocan sensación de saciedad.
 - ⇒ Aumentan la palatabilidad de las comidas.


- ⇒ Los triglicéridos se absorben en los entericitos, pasan a los conductos linfáticos hasta la sangre. NO pasan por el hígado. Los **quilomicrones** van al tejido adiposo blanco.
- ⇒ En el tejido adiposo blanco:

- ⇒ Este ciclo está en **continuo** movimiento.
- ⇒ La grasa ingerida que va al **tejido adiposo blanco** se hidroliza. Al hidrolizarse, el quilomicrón queda reducido a <u>remanente de quilomicrón</u> (formado esencialmente por colesterol).
- ⇒ El colesterol se transporta al hígado.
- ⇒ El tejido adiposo blanco envía señales hormonales en forma de **adipoquinas**.
- ⇒ Cuando nos alimentamos, la insulina aumenta su concentración en el cuerpo y por lo tanto disminuye la relación **glucagón/insulina**. Con esta relación disminuida, ocurre:
- ⇒ Cuando los triglicéridos pasan en forma de quilomicrones a la linfa:



⇒ Ante un exceso de azúcares, el cuerpo responde forman glucógeno. Sin embargo, si el exceso es demasiado exagerado, se sintetizan lípidos en forma de triacilglicéridos.


Ácido graso + Glicerol – 3 – P → TG (VLDL [very low density lipoprotein]) → Tejido adiposo blanco

- ⇒ En el hígado se produce la vía del glucógeno y se forman los VLDL, los cuales pasan a la sangre y van al tejido adiposo blanco.
- ⇒ Cuando estamos en la fase de ayuno, la insulina baja en sangre y el coeficiente **glucagón/insulina** aumenta. Por ello reproduce:

Propiedades físico-químicas de los ácidos grasos

- ⇒ <u>ÁCIDO GRASO</u>: los ácidos grasos consisten en una cadena hidrocarbonada con un grupo carboxilo terminal que corresponden con una fórmula química tal como: CH₃ (CH₂)_n COO-
- ⇒ Ejemplos de ácidos grasos:
 - \Rightarrow Esteárico: CH₃ (CH₂)₁₆ COO \rightarrow 18:0
 - ⇒ Oleico: $CH_3 (CH_2)_7 CH = CH (CH_2)_7 COOH$ → 18:1 (9)
 - ⇒ Linoléico: 18:2 (9, 12)
 - ⇒ **Linolénico**: 18:3 (9, 12, 15)
 - ⇒ **Araquidónico**: 20:4 (5, 8, 11, 14)
- ⇒ Los dobles enlaces en ácidos grasos se encuentran de tres a tres carbonos.
 - ⇒ El doble enlace se puede oxidar para formar epóxidos y glicoles:

- \Rightarrow Nómina de carbonos de los ácidos grasos:
 - \Rightarrow El carbono 2 de la cadena del ácido graso se conoce como carbono α .
 - \Rightarrow El último carbono se denomina carbono ω .
 - ⇒ Por ejemplo, en el ácido linolénico...

$$CH_3 - CH_2 - CH = CH - CH_2 - CH = CH - CH_2 - CH = CH - (CH_2)_7 - COOH$$

 \Rightarrow El linolénico es el omega 3 porque el carbono ω está situado a tres carbonos del doble enlace más cercano.

- ⇒ Punto de fusión:
 - ⇒ El punto de fusión depende de:
 - ⇒ **Longitud de la cadena** (a cadena más larga mayor punto de fusión).
 - ⇒ Número de dobles enlaces (a mayor número de dobles enlaces menor punto de fusión)
 - ⇒ P. Ej. Los ácidos insaturados son los que más frecuentemente encontramos en los lípidos de membrana celular.
 - \Rightarrow Ejemplos

	Carbonos	Nombre	Temperatura (°C)
Saturado	12	Laúrico	44,2
	14	Mirústico	53,9
	16	Palmítico	63,1
	18	Esteárico	69,6
Insaturado	18:1 (9)	Oleico	13,4
	18:2 (9, 12)	Linoléico	-5
	18:3 (9, 12, 15)	Linolénico	-11
	20: 4 (5, 8, 11, 14)	Araquidónico	-49,5

⇒ Isómeros CIS-TRANS

- ⇒ Los ácidos grasos son compuestos biológicos que pueden adoptar las posiciones cis o trans:
 - ⇒ Los ácidos grasos en cis serán los que encontremos en organismos vivos.

Clasificación de los ácidos grasos

- ⇒ Se pueden clasificar desde diferentes puntos de vista:
 - ⇒ Bioquímico
 - ⇒ Saturados
 - ⇒ P. Ej. Esteárico y palmítico.
 - ⇒ Insaturados
 - ⇒ Mono-insaturado. P. Ej. Oleico
 - ⇒ Poli-insaturados
 - ⇒ Nutricional
 - ⇒ Esenciales (linoléico, linolénico)
 - \Rightarrow No esenciales

Lípidos simples: estudio de los triacilglicéridos

Lípidos simples: estudio de los glicerofosfolípidos

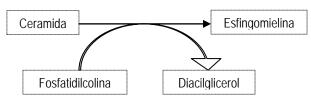
Donde X puede ser: colina, etanolamina, serina, inositol

- ⇒ Importancia de la <u>fosfatidilcolina</u>, el surfactante:
 - ⇒ El surfactante es una sustancia que se encuentra en los pulmones y evitan la atelectasia (la obliteración de los alvéolos) y por tanto, la posibilidad de morir asfixiados.
 - ⇒ Está compuesto por:
 - ⇒ Más de un 80% de lecitina (fosfatidilcolina).
 - ⇒ Fosfatidilglicerol
 - ⇒ Fosfatidilinositol
 - ⇒ 18 KDa y 36 KDa de proteínas.
 - ⇒ Estas sustancias son sustancias amfipáticas (con un extremo polar y otro apolar). En las células alveolares de tipo II se secretan estas sustancias al medio que se ubican en la superficie aire-líquido. Esto reduce la tensión superficial e impide los efectos de las presiones de Laplace, por las que los alvéolos se cerrarían y obliterarían.
 - ⇒ Estructura química de la **fosfatidilcolina**:

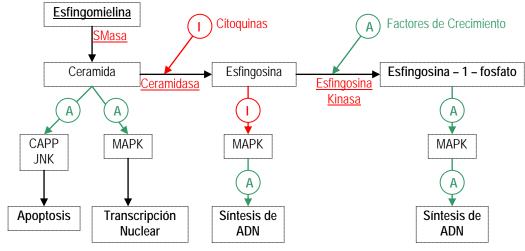
⇒ Fosfatidil inositol: señales

- ⇒ El Fosfatidil inositol es un fosfolípido que posee un grupo polar de inositol como sustituyente de su cadena
- ⇒ Cuando una señal llega a la célula, el Fosfatidil inositol se descompone en inositol y en el diglicérido correspondiente gracias a la acción de la fosfolipasa C:
 - ⇒ El diglicérido activa la proteín kinasa C que a su vez fosforila proteínas y provoca diferentes efectos celulares.
 - ⇒ El inositol pasa a **inositol 3 fosfato** (carbonos 1, 4 y 5) que se "dirige" al retículo endoplásmico y provoca la liberación del calcio que almacena la célula, produciendo otros **efectos celulares**.
- ⇒ En conclusión, los productos de degradación del Fosfatidil inositol actúan como segundos mensajeros provocando respuestas celulares.

Lípidos complejos: estudio de los esfingolípidos

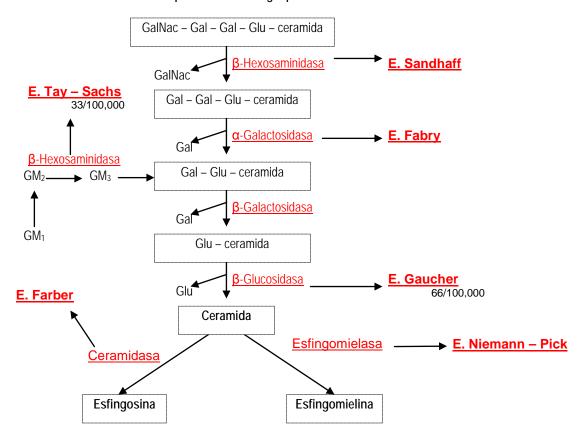

- ⇒ Fosfoesfingolípidos
 - ⇒ Esfingosina

 \Rightarrow Ceramida

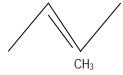

⇒ Esfingomielina

⇒ Síntesis de Esfingomielina

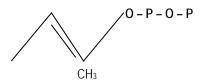
⇒ La esfingomielina se sintetiza a partir de una ceramida y una fosfatidilcolina que actúa como donante del grupo **colina**. La fosfatidilcolina cede la colina a la ceramida que pasa a esfingomielina.


⇒ Las funciones de la esfingomielina son muchas y variadas. Interviene en fenómenos como la apoptosis, transcripción nuclear y síntesis de ADN (crecimiento).

⇒ Glucoesfingolípidos


- ⇒ Esfingolípidos neutros (cerebrósidos)
 - ⇒ Glucosilceramida: unión de una ceramida con una glucosa.
 - ⇒ Galactosilceramida: unión de una ceramida con una galactosa.
 - ⇒ Lactosilceramida: unión de una ceramida con una lactosa.
 - ⇒ Globósido: Unión de una ceramida con:
 - ⇒ Glucosa
 - ⇒ Dos galactosas
 - ⇒ N-acetil-galactosamina

- ⇒ Esfingolípidos ácidos
 - ⇒ Sulfátido: unión de una ceramida con una galactosa sulfatada.
 - ⇒ Gangliósidos:
 - ⇒ GM₃: formado por una ceramida, glucosa, galactosa y NANA.
 - ⇒ GM₂: formado por una ceramida, glucosa, galactosa (unida a NANA) y N-acetilgalactosamina.
 - ⇒ GM₁: formado por una ceramida, glucosa, galactosa (unida a NANA), N-acetilgalactosamina y galactosa.
 - NANA = Ácido N-acetil-neuramínico
- ⇒ Metabolismo con implicación de esfingolípidos



Estudio de los isoprenoides

- ⇒ Existen dos tipos de isoprenoides
 - ⇒ Terpenos
 - ⇒ Esteroides
- \Rightarrow Terpenos
 - ⇒ Formados por unidades de isopreno:

⇒ La síntesis de terpenos comienza con el compuesto **isopentil pirofosfato**:

\Rightarrow Ejemplos de terpenos:

Tipo	Nº de unidades isopreno	Nombre
Monoterpeno	2	Geraniol
Sesquiterpeno	3	Farneseno
Diterpeno	4	Fitol
Triterpeno	6	Escualeno (intermediario de la síntesis de esteroides)
Tetraterpeno	8	β-caroteno
Politerpeno	Miles	Goma

\Rightarrow Esteroides

- \Rightarrow Procedentes mayoritariamente del <u>colesterol</u> \Rightarrow Vitamina D

 - \Rightarrow Sales biliares
 - \Rightarrow Precursor de hormonas esteroideas
 - ⇒ Componente fundamental de las membranas
 - ⇒ (Código 95)