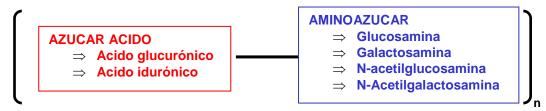
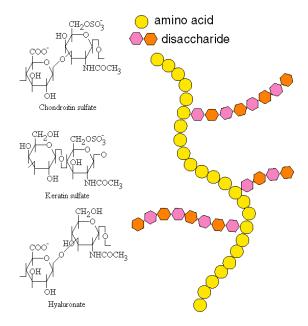
Introducción


- ⇒ Es el tejido que sirve de conexión para otros tejidos, conecta tejidos duros y blandos.
- ⇒ Elementos que lo componen
- ⇒ Representa el entramado arquitectónico del cuerpo de los vertebrados
 - ⇒ Nexo de unión entre células y tejidos: espacio o matriz extracelular
 - ⇒ Proteoglicanos, glucoproteínas...
 - ⇒ Nexo de unión entre tejidos blandos y estructuras mineralizadas
- ⇒ Elementos celulares minoritarios:
 - ⇒ **Fibroblastos**: generan componentes orgánicos de la matriz extracelular
 - ⇒ Células inmunitarias residentes: macrófagos y mastocitos
 - ⇒ Células inmunitarias temporales: linfocitos y granulocitos
- ⇒ Sustancia extracelular fundamental:
 - ⇒ Producto de la actividad de fibroblastos (condroblastos, osteoblastos)
 - ⇒ Estructuras macromoleculares más representativas:
 - ⇒ Colágeno
 - ⇒ Elastina
 - ⇒ Fibrillina
 - ⇒ Fibronectinas
 - ⇒ Mucopolisacáridos
 - ⇒ Proteoglicanos

Matriz extracelular

- ⇒ Elevada versatilidad:
 - ⇒ Composición bioquímica
 - ⇒ Organización molecular
- ⇒ Adaptación a las necesidades estructurales y funcionales de órganos:
 - ⇒ Soporte inerte
 - ⇒ Interacción células/elementos de la matriz: regulación de funciones:
 - ⇒ Migración celular
 - ⇒ Desarrollo tisular
 - ⇒ Diferenciación y morfología
 - ⇒ Actividad metabólica
- \Rightarrow Diferencias entre tejidos conectivos:
 - ⇒ Tipo
 - ⇒ Organización tridimensional
 - ⇒ Tendones y ligamentos: colágeno I / fibras paralelas: tensión
 - ⇒ Cartílago: colágeno II+proteoglicanos: elasticidad-amortiguación
 - ⇒ Vasos: colágeno+elastina: tensión-elasticidad
 - ⇒ Piel: colágeno I / fibras al azar: extensión
 - ⇒ Huesos y dientes: colágeno+polifosfatos; dureza-resistencia
 - ⇒ Cristalino: colágeno: transparencia


Mucopolisacaridos

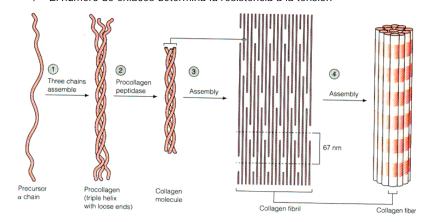
- ⇒ Largos polímeros formados por glucosaminoglicanos
- ⇒ Están llenos de grupos –OH que absorben agua y dan turgencia y consistencia al tejido.
- ⇒ Tienen una elevada versatilidad por su composición y organización. Veremos que es diferente según el área del organismo (tendón, hueso…)
- ⇒ Los mucopolisacáridos y proteoglicanos tienen función estructural.

- ⇒ Acido hialurónico: acido glucurónico+N-acetilglucosamina
- ⇒ Keratán sulfato, Condroitin sulfato, etc.
- ⇒ Forman un gel poroso en el que se insertan proteinas fibrosas y células
- ⇒ Retienen gran cantidad de agua: turgencia y capacidad de filtro
- ⇒ Se asocian con proteinas estructurales: **proteoglicanos**

Proteoglicanos

⇒ Cadenas largas de glúcidos unidas a pequeñas cadenas de proteínas

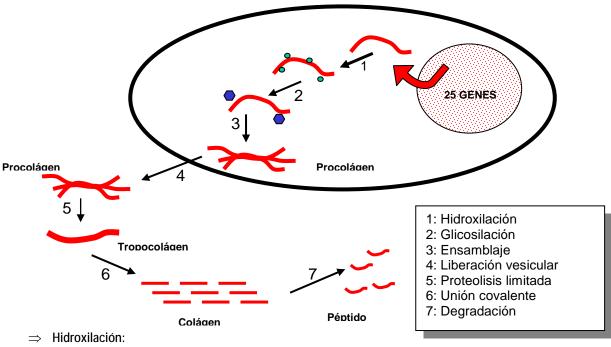
Proteinas fibrilares


- ⇒ Se unen mediante 4 lisinas a una reacción catalizada por la lisina oxidasa.
 - ⇒ Elastina:
 - ⇒ Tejidos elásticos (vasos)
 - ⇒ 1-2% del contenido en colágeno
 - ⇒ Proteína pequeña: forma fibrillas muy insolubles
 - ⇒ Enlaces covalentes cruzados: desmosina (4 lisinas/lisina oxidasa)
 - ⇒ Cambios conformacionales: elasticidad
 - \Rightarrow Fibrillina:
 - ⇒ Proteína que forma parte de las microfibrillas
 - ⇒ Distribución amplia en muchos tejidos conectivos
 - ⇒ Forma de bastón con cabeza globular: alineación en microfibrillas

Proteinas adhesivas

- ⇒ Fibronectinas:
 - ⇒ Pertenecen a la familia de las Integrinas (moléculas de adhesión)
 - ⇒ Poseen diferentes dominios de unión a:
 - ⇒ Receptores de membrana en células del tejido conjuntivo
 - ⇒ Fibronectinas para formar dímeros
 - ⇒ Colágeno
 - ⇒ Proteoglicanos
 - ⇒ Aseguran la estructura de la matriz extracelular
- ⇒ Laminina:
 - ⇒ Proteína que participa en los fenómenos de adhesividad y migración
 - ⇒ Tiene sitios de unión a células de manera que estas pueden desplazarse a través de la fibra proteica y utilizarla de guía.

Colágeno


- ⇒ Proteína fibrosa altamente insoluble
- ⇒ Es la proteína más abundante del organismo (25% del peso corporal)
- ⇒ Soporte ideal para el organismo:
 - ⇒ Resistente a la tensión y a la tracción
 - ⇒ Flexible
 - ⇒ Alta versatilidad estructural
 - ⇒ Termoinestable (gelatiniza por encima de 45°C)
- ⇒ Estructura característica basada en la unidad de tropocolágeno:
 - ⇒ Triple hélice dextrógira
- ⇒ Biosíntesis compleja:
 - ⇒ Numerosos tipos (al menos 14)
 - ⇒ Al menos 25 genes para las cadenas a
 - ⇒ Se forma procolágeno con extensiones inservibles
 - ⇒ Modificaciones post-traduccionales importantes
 - ⇒ Se eliminan las colas en el líquido extracelular y también los mecanismos de degradación.
- ⇒ El desplazamiento de una fibra con moléculas de colágeno aumenta su fuerza de unión.
- ⇒ Es rico en lisina y aminoácido pequeños que faciliten un giro de hélice pequeño.
- ⇒ Estructura de la molecula de colageno
 - ⇒ Triple hélice dextrógira, rígida, delgada y alargada
 - ⇒ Se asocian entre sí de forma paralela y desplazada, formando fibras
 - ⇒ Estructura secundaria de las cadenas a:
 - ⇒ Hélice levógira estirada
 - ⇒ Tres aminoácidos por vuelta
 - ⇒ Composición en aminoácidos:
 - ⇒ Rico en glicina, prolina, hidroxiprolina, hidroxilisina
 - ⇒ Hidroxilación:
 - ⇒ Hidroxilasas específicas: Fe+2, O2, ascorbato
 - ⇒ Hidroxiprolina: estabiliza la hélice de colágeno
 - ⇒ Hidroxilisina: centro de glicosilación (glicosil transferasas)
 - ⇒ Secuencia repetitiva GLY-X-Y-GLY
 - ⇒ X: mayoritariamente Pro; Y: mayoritariamente OH-Pro
 - ⇒ Prolina e hidroxiprolina (OH-Pro):
 - ⇒ Repulsiones estéricas
 - \Rightarrow Pocas posibilidades conformacionales
 - ⇒ Estiramiento de la hélice
 - ⇒ Gly-X-Y-Gly:
 - ⇒ Pequeño tamaño
 - ⇒ Acercamiento y ensamblaje de las tres cadenas a
 - ⇒ Estabilización de la triple hélice:
 - ⇒ Puentes de hidrógeno intercatenarios
 - ⇒ Enlaces covalentes cruzados:
 - ⇒ Entre resíduos de Lys oxidados: Lisil oxidasa (Cu)
 - ⇒ Estabilización de las fibras de colágeno:
 - ⇒ Enlaces covalentes entre moléculas adyacentes
 - ⇒ Lisil oxidasa
 - ⇒ El número de enlaces determina la resistencia a la tensión

Tipos de colágeno

Tipo	Localización	Estructura
1	Piel, huesos, tendones, ligamentos, cornea	Fibrillas estriadas
Ш	Cartilago, discos intervertebrales, humor vítreo del ojo	Fibrillas estriadas
Ш	Piel, tendones, vasos sanguíneos, pared del utero	Fibrillas estriadas
IV	Lámina Basal	Fibrillas finas lisas
V	Cornea, tejidos intersticiales	Fibrillas estriadas
VI	Nervios y vasos sanguíneos	Fibrillas finas lisas
VII-XV	Según el tipo. La mayoría son componentes minoritarios de cartílago y tendones	Fibrillas finas lisas

Biosíntesis y catabolismo de colágeno

- ⇒ Modificación post-traduccional
- ⇒ Prolina hidroxilasa (3-OH Pro y 4-OH Pro) y lisina hidroxilasa (5-OH Lys)
- ⇒ Requieren Fe2+, a-cetoglutarato, O2 y ácido ascórbico
- ⇒ Glicosilación:
 - ⇒ Glicosil transferasa
 - ⇒ Añade moléculas de GLU, GAL o GLU-GAL a resíduos de Ser, Thr o OH-Lys
 - ⇒ Es muy variable según el tejido (6 -120 unidades/molécula de tropocolágeno)
- ⇒ Ensamblaje:
 - ⇒ Unión de las tres hélices a para dar lugar al **procolágeno** (dominios globulares)
- ⇒ Liberación vesicular:
 - ⇒ Secreción al espacio intercelular
- ⇒ Proteolisis limitada:
 - ⇒ Endopeptidasas extracelulares específicas
 - ⇒ Hidrólisis de los extremos globulares
 - ⇒ Conduce a la formación de **tropocolágeno**
- ⇒ Unión covalente de unidades de tropocolágeno:
 - ⇒ Lisina oxidasa (extracelular)
 - ⇒ Requiere Cu
 - ⇒ Transforma el grupo NH2- de lisinas en grupo aldehído
 - ⇒ Condensación aldólica : bases de Schiff entre Lys de moléculas distintas
- ⇒ Renovación del colágeno:

Patología molecular del tejido conectivo

⇒ CONECTIVOPATIAS CONGENITAS:

- ⇒ Se conocen más de 140 patologías
- ⇒ Se manifiestan clínicamente por anomalías de articulaciones, huesos y ligamentos
- ⇒ Síndrome de Osteogénesis Imperfecta (OI):
 - ⇒ Herencia autosómica dominante: Fracturas y deformaciones óseas
 - ⇒ Mutación en alguno de los genes del colágeno
 - ⇒ OI-I: Forma ligera de aparición tardía
 - ⇒ OI-II: Forma letal (fracturas intrauterinas y perinatales): mutaciones en genes I
 - ⇒ OI-III: Forma no letal, deformante: mutaciones puntuales Gly∧Cys (GGT/TGT)
 - ⇒ OI-IV: Forma benigna: mutaciones en genes de la cadena a2 del colágeno I

⇒ Síndrome de Ehler-Danlos:

- ⇒ Gran heterogeneidad en sus manifestaciones y gravedad
- ⇒ Extrema lasitud de los ligamentos: hipermovilidad
- ⇒ Alteraciones en genes del proceso de maduración:
 - ⇒ Déficit de lisina hidroxilasa
 - ⇒ Déficit de lisina oxidasa
 - ⇒ Déficit de endopeptidasas
 - ⇒ Déficit de fibronectina

⇒ Síndrome del Cutis Laxo:

⇒ Déficit de elastina: piel sin elasticidad y con arrugas tempranas

⇒ Síndrome de Marfan:

- ⇒ Herencia autosómica recesiva
- ⇒ Alteraciones musculoesqueléticas, cardiovasculares y oculares
- ⇒ Déficit de fibrillina

⇒ Mucopolisacaridosis:

- ⇒ Manifestaciones clínicas variadas: rigidez articular
- ⇒ Anomalías en la síntesis o degradación de glucosaminoglicanos
- ⇒ Herencia recesiva autosómica (ligada al sexo: síndrome de Hunter)
- ⇒ Suelen ser deficiencias de la degradación: acumulación de mucopolisacáridos
- ⇒ Pueden producir alteraciones cerebrales (anomalías de cerebrósidos)
 - \Rightarrow Mucopolisacaridosis de tipo I: déficit de b-glucuronidasa
 - ⇒ Síndrome de Morquio: acumulación de keratán sulfato
 - ⇒ Síndrome de San Filippo: acumulación de heparán sulfato

⇒ CONECTIVOPATIAS ADQUIRIDAS:

- ⇒ Síndrome de Goodpasture:
 - ⇒ Autoanticuerpos contra colágeno IV
- ⇒ Escorbuto:
 - ⇒ Deficiencia de vitamina C (cofactor de hidroxilasa)
 - ⇒ Hemorragias, deficiente cicatrización
- \Rightarrow Latirismo:
 - ⇒ Intoxicaciones por semillas comestibles
 - ⇒ Inhibición de lisina oxidasa por b-aminopropionitrilo
- ⇒ Deficiencia grave de cobre:
 - ⇒ Inhibición de lisina oxidasa
- ⇒ Envejecimiento:
 - ⇒ Fragilidad y enlaces entrecruzados