N. C.: Vannevar Bush nació el 11 de marzo de 1890 en Everett, Massachusetts y estudió en el Tufts College de la Universidad de Harvard y en el Instituto de Massachussetts de Tecnología (MIT), donde más tarde desempeñó diversos cargos docentes y administrativos.Tenía dos hermanas. Su padre era ministro de Universalist. De niño, Bush estaba a menudo enfermo por lo que permanecía largos periodos de tiempo postrado en cama. En la escuela demostró una gran aptitud para la matemáticas. Desde pequeño ya era un alumno aventajado y en 1913 construyó una máquina que servía para calcular distancias entre terrenos desiguales a la que llamó Profile Tracer. En 1919, se une al Departamento de Ingeniería Electrica del MIT, donde ejerció la docencia durante 12 años (en total estuvo 25 años como docente). Trabajó en tareas como la fabricación de dispositivos ópticos y de composición fotográfica, de sistemas de almacenamiento y recuperación de microfilms. En 1922 funda la compañía American Appliance Company con su compañero Tufts Laurence, K. Marshall y el científico Charles G. Smith en Cambridge (Massachussetts), que posteriormente se vería convertida en Raytheon. Raytheon era una compañía, principal contratista en materia de Defensa del Gobierno de los EE.UU., que se ocupaban de las tareas de seguridad ciudadana causada por los posibles agentes externos. Entre los productos que se fabricaban están: visores infrarrojos, ciberseguridad, detectores de agentes químicos, o traductores árabe- inglés. Cobraron una gran relevancia en la investigación de posibles peligros tras el 11 de septiembre como la detección de posible radioactividad o la inmunidad ante ataques posteriores. En la década de 1930 construyó la primera computadora analógica a la que llamó analizador diferencial. Se diferenciaba de las digitales en que representan los números mediante tensiones eléctricas de voltaje variable, y servía para realizar automáticamente algunas de las operaciones elementales. Este invento tuvo repercusión en muchas áreas, especialmente en la ingeniería y en la química. En 1939 es nombrado presidente del Carnegie Institute de Washington, y Director del National Advisory Committee for Aeronautics; en 1941 fue nombrado, por el presidente de EE.UU., director de la Office of Scientific Research and Development, siendo jefe de una comunidad de científicos encargados de la creación de la bomba atómica en los albores de la Segunda Guerra Mundial. En 1945 publica un artículo llamado «Cómo podríamos pensar» "As we may think", en la revista Atlantic Monthly, donde describió, principalmente, la llegada de dos dispositivos. N.C.: ¿ Cuáles han sido los beneficios que el ser humano ha extraído del uso de la ciencia y de los instrumentos que su investigación ha dado como fruto ? V.B.: En primer lugar, han aumentado su control sobre el entorno material. Han mejorado su comida, su vestido y su vivienda, además de aumentar su seguridad y liberarlo, al menos en parte, de las ataduras de la existencia primitiva. Asimismo, le han proporcionado un creciente conocimiento de sus propios procesos biológicos, de modo que lo han ido liberando progresivamente de la enfermedad y han aumentado su esperanza de vida. Al mismo tiempo, han arrojado luz sobre las interacciones de sus funciones psíquicas y fisiológicas, otorgándole la promesa de una mayor salud mental. La ciencia ha proporcionado al ser humano formas veloces de comunicación entre personas individuales, le ha permitido el almacenamiento de las ideas y le ha otorgado la posibilidad de manipular este archivo y extraer de él ideas, de modo que el conocimiento evolucione y perdure a lo largo de toda la existencia del género humano, y no sólo de la vida de sus componentes individuales.

N.C.:

¿ Puede haber algún cambio o evolución en esta situación ?

V.B.:

Existen signos de un cambio en esta situación, un cambio posibilitado por los potentes instrumentos que estamos comenzando a utilizar. Células fotoeléctricas capaces de ver los objetos en un sentido físico, fotografía avanzada que puede registrar lo que se ve e incluso lo que no se ve, válvulas capaces de controlar potentes fuerzas por medio del uso de una fuerza menor que la que un mosquito necesita para mover sus alas, tubos de rayos catódicos que vuelven visibles sucesos tan breves que, en comparación con los cuales un microsegundo es un largo lapso de tiempo, combinaciones de relés que pueden llevar a cabo secuencias de movimientos con mayor fiabilidad y miles de veces más rápido que cualquier ser humano... Disponemos de infinidad de ayudas de tipo mecánico por medio de las cuales podemos llevar a cabo una transformación en los medios de científicos de archivo. N.C.:

¿ Seguirá existiendo la fotografía en seco ?

V.B.:

En la actualidad, este tipo de fotografía se da en dos formas. Cuando Brady llevó a cabo sus fotografías de la Guerra Civil estadounidense, la placa fotográfica debía estar húmeda en el momento de la exposición. Hoy en día ha de estar húmeda durante su revelado. Sin embargo es posible que, en el futuro, no tenga por qué estar húmeda en absoluto. Existen desde hace ya algún tiempo películas fotográficas que, impregnadas con una emulsión diazoica, no necesitan ser sometidas al proceso del revelado, por lo que la imagen es ya visible instantes después de haber sido operado el disparador de la cámara. Una exposición a un gas amónico destruye la emulsión que no ha sido expuesta y permite que la película recién impresionada pueda observarse a la luz del día. En la actualidad, este proceso es algo lento, pero habrá alguien que conseguirá acelerarlo en el futuro porque con el grano de la película no se dan problemas que puedan entretener demasiado a los científicos encargados de la investigación de materiales fotográficos. En muchas ocasiones resultará de gran utilidad ser capaces de disparar el obturador de la cámara y ver la fotografía inmediatamente después.


TIME Magazine
mailto:usuariodecorreo@alumni.uv.es? subjetc=entrevistaTIME